
Visit us at AdAstra-Soft.com

AdAstra RTK
Real Time Kernel

STM32 edition 2022-03

AdAstra RTK - STM32 Edition 2 2022-03

Copyright (C) 2018-2022 Alain Chebrou

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License".

Limitation of liability

DANS AUCUNE CIRCONSTANCE AUTRE QUE CELLES REQUISES PAR LA LOI APPLICABLE
OU CONSENTIES PAR UN ACCORD ÉCRIT, LES TITULAIRES DE DROITS, OU TOUT AUTRE
PARTIE QUI MODIFIE ET/OU TRANSFÈRE LE PROGRAMME AINSI QU’AUTORISÉ
PRÉCÉDEMMENT, NE PEUVENT ÊTRE TENU POUR RESPONSABLE ENVERS VOUS POUR
LES DOMMAGES, INCLUANT TOUT DOMMAGE GÉNÉRAL, SPÉCIAL, ACCIDENTEL OU
INDIRECTS CONSECUTIFS A L’UTILISATION OU A L’INCAPACITÉ D’UTILISER LE
PROGRAMME (NOTAMMENT LA PERTE DE DONNÉES OU L’INEXACTITUDE DES DONNÉES
RETOURNÉES OU LES PERTES SUBIES PAR VOUS OU DES PARTIES TIERCES OU
L’INCAPACITÉ DU PROGRAMME À FONCTIONNER AVEC TOUT AUTRE PROGRAMME),
MÊME SI UN TEL TITULAIRE OU TOUTE AUTRE PARTIE A ÉTÉ INFORMÉE DE LA
POSSIBILITÉ DE TELS DOMMAGES.

Legal notice

This book contains references to several products or technologies whose copyright belongs
to their respective owners. Among others:

STM32, ST-LINK, STM32CubeMX are copyright © ST Microelectronics NV.

ARM, Cortex, Cortex-M, CoreSight, CoreLink, Thumb, Thumb-2, AMBA, AHB, APB, are
registered trademarks of ARM Holdings.

GCC, GDB and other tools of GNU Collection Compiler are copyright © Free Software
Foundation.

MISRA and MISRA C are registered trademarks of MIRA Limited.

Eclipse is copyright of the Eclipse community and all its contributors.

AdAstra-RTK is copyright © AdAstra-Soft.

If a copyright notice has been forgotten in this book and should be mentioned, let me know :
contact at AdAstra-Soft.com.

AdAstra RTK - STM32 Edition 3 2022-03

Table of content

1 User's Guide ... 8

1.1 Introduction to RTOS .. 8

1.2 Kernel overview .. 9

1.3 The Board Support Package .. 10

1.4 Static or dynamic allocation? .. 11

1.5 The identifiers ... 11

1.6 Standard library .. 11

1.6.1 1.6.1 Note on using newlib. .. 12

1.7 MISRA compatible? .. 14

1.8 Task management ... 15

1.8.1 Creating a task ... 15

1.8.2 Deleting a task ... 15

1.8.3 Suspending a task.. 15

1.8.4 Task priority management .. 16

1.8.5 The task states ... 16

1.9 Interrupts ... 19

1.9.1 Types and priorities of interrupts .. 19

1.9.2 Critical sections .. 19

1.9.2.1 Standard critical section ... 19

1.9.2.2 Fast critical section ... 20

1.9.3 Enabling and disabling interrupts ... 20

1.9.4 Interrupt Handler .. 21

1.9.4.1 Setting the priority of an interrupt ... 21

1.10 System timer and low power .. 23

1.11 Mutual exclusion: The Mutex ... 25

1.12 Semaphores .. 26

1.13 Inter-task signals .. 27

1.14 Dynamic memory management ... 27

1.14.1 TLSF Dynamic memory algorithm .. 28

1.14.2 Block allocation algorithm ... 29

1.14.3 Configuring memory allocation ... 29

1.14.4 Memory allocation port ... 30

1.15 Software Timers .. 31

1.16 Message queues ... 33

1.17 Buffer pools ... 34

1.18 Board Support Package ... 35

AdAstra RTK - STM32 Edition 4 2022-03

1.19 Debug ... 35

1.19.1 Console .. 35

1.19.2 aaLogMes .. 35

1.19.3 Stacks monitoring .. 37

1.19.4 SWO .. 37

1.19.5 The AA_ASSERT macro .. 38

1.19.6 Centralized handling of errors .. 38

1.19.7 Traces .. 41

2 Traces .. 42

2.1 Traces configuration ... 42

2.2 Enabling traces ... 42

2.3 Traces implementation ... 42

2.4 User traces .. 43

2.5 Trace example ... 43

2.6 The aaVieew application ... 44

3 Writing an application .. 47

3.1 Kernel configuration ... 47

3.2 System initialization .. 48

3.3 Kernel initialization ... 49

3.4 Application initialization ... 50

3.5 STMicroelectronics Hardware Abstraction Layer .. 51

4 Reference Manual ... 52

4.1 Miscellaneous ... 52

aaVersion ... 52

4.2 Task management ... 53

aaTaskCreate .. 53

aaTaskDelete ... 54

aaTaskIsId ... 55

aaTaskGetBasePriority .. 55

aaTaskGetRealPriority ... 56

aaTaskSetPriority ... 56

aaTaskSuspend ... 56

aaTaskResume .. 57

aaTaskDelay .. 57

aaTaskWaikeUp ... 58

aaTaskSelfId .. 58

aaTaskYield ... 58

AdAstra RTK - STM32 Edition 5 2022-03

aaTaskGetName .. 59

aaTaskCheckStack .. 59

aaTaskInfo ... 60

aaTaskStatClear .. 61

4.3 Mutex .. 62

aaMutexCreate .. 62

aaMutexDelete ... 62

aaMutexIsId ... 63

aaMutexTake ... 63

aaMutexTryVTake .. 64

aaMutexGive .. 64

4.4 Semaphore .. 65

aaSemCreate ... 65

aaSemDelete ... 65

aaSemIsId .. 66

aaSemTake ... 66

aaSemTryTake .. 67

aaSemGive .. 67

aaSemFlush ... 67

aaSemReset .. 68

4.5 Inter-task signals .. 69

aaSignalWait .. 69

aaSignalSend .. 70

aaSignalPulse .. 70

aaSignalClear .. 71

4.6 Dynamic memory allocation .. 72

aaMalloc .. 72

aaCalloc ... 72

aaRealloc ... 73

aaFree ... 73

aaTryFree .. 73

aaMemPoolCheck .. 74

4.7 TLSF Memory Partitioning ... 75

tlsfInit ... 75

tlsfMalloc .. 75

tlsfCalloc .. 76

tlsfFree ... 76

tlsfRealloc .. 77

tlsfCheck .. 77

4.8 Block Memory Partition .. 78

AdAstra RTK - STM32 Edition 6 2022-03

aaInitMallocBloc ... 78

aaMallocBloc ... 78

aaMallocBlocFreeSize ... 79

4.9 Log and console ... 80

aaLogMes .. 80

aaLogMesSetPutChar .. 80

aaPrintf .. 80

aaPrintfEx .. 82

aaSnPrintf .. 82

aaGets ... 83

aaSetStdOut .. 83

aaSetStdIn ... 83

aaPutChar .. 84

aaGetChar ... 84

4.10 Software Timers .. 85

aaTimerCreate ... 85

aaTimerDelete ... 85

aaTimerIsId .. 85

aaTimerSet .. 86

aaTimerStart .. 87

aaTimerStop .. 87

4.11 Message queues ... 88

aaQueueCreate ... 88

aaQueueDelete .. 89

aaQueueIsId .. 89

aaQueueGive ... 89

aaQueueTake .. 90

aaQueuePeek .. 91

aaQueuePurge... 92

aaQueueGetCount ... 92

4.12 Buffer Pool ... 93

aaBufferPoolCreate ... 93

aaBufferPoolDelete .. 94

aaBufferPoolIsId .. 94

aaBufferPoolTake .. 95

aaBufferPoolGive ... 95

aaBufferPoolGetCount ... 96

aaBufferPoolReset ... 96

4.13 User Functions .. 97

userInitTask ... 97

AdAstra RTK - STM32 Edition 7 2022-03

aaUserReleaseStack ... 97

aaUserNotify .. 98

4.14 Board Support Package ... 99

bspGetTickRate ... 99

bspSetTickRate .. 99

bspGetSysClock .. 99

bspResetHardware .. 100

bspOutput .. 100

bspInput ... 101

bspMainStackCheck .. 101

bspTsGet ... 102

bspRawTsDelta .. 103

bspTsDelta ... 103

bspDelayUs ... 104

swoInit ... 105

swoIsEnabled .. 105

swoSendXx .. 106

swoPutChar, swoPutStr ... 106

4.15 Intrinsics .. 107

5 License .. 108

AdAstra RTK - STM32 Edition 8 2022-03

1 User's Guide

1.1 Introduction to RTOS

Why use a real-time kernel, or RTOS?

The next few lines present the arguments most often proposed on the question.

A traditional application without RTOS on a microcontroller usually uses two
principles:

- The use of interrupt event management

- A "super loop" that periodically and consecutively calls the processes to be
performed, which must be written in the form of state machines to allow a sort of
cooperative "round robin" multitasking.

These applications, when they become more complex over time, and the
maintainers follow one another reveal their drawback:

- The timings become difficult to master in the super loop.

- The interactions between the different parts of the application become
inextricable.

- To solve the above difficulties, we develop exclusion and time management
functionalities. These functionalities are generally non-generic and need to be
increased with each new use.

- The realization of these functionalities uses notions of CPU architecture and is
time consuming.

Finally we note that many parts of the functionalities of a RTOS have been
developed: we reinvent the wheel. But without having the advantages that one is
entitled to expect from a real-time kernel.

Here's what a real-time kernel brings:

- The efficient management of multiple tasks makes it possible to break down the
application into simpler tasks to develop, with an automatic scheduling. You can
write your tasks and let the kernel make them work together.

- An RTOS provides ready-made and proven services: management of interrupts,
timers, communication between tasks (semaphore, mutex, message queue,
mailbox)... Examples allow to implement them in your application. Often the
kernel-specific drivers for the most used or complex devices are available.

- An RTOS provides sophisticated diagnostic tools, which further reduce
development time: debugging, multilevel configurable traces, stack monitoring.
Diagnostics is often the most valuable service for the developer.

- The RTOS provides a BSP that dispenses you from writing low-level layers and
having to master the architecture of increasingly complex processors. If a
specific BSP does not exist, examples are provided and can be adapted. Your

AdAstra RTK - STM32 Edition 9 2022-03

application is portable (as far as the kernel is concerned) on all the processors
supported by the kernel.

In conclusion, adding an RTOS to your project means adding one or more highly
skilled engineers for a fraction of the cost. A good RTOS has already solved many
hidden problems that take a long time to resolve. In addition, the supplier can
provide support. Using proven solutions reduces risk and gives your project the best
chance of success.

It must be admitted, however, that the super loop is suitable for a certain number of
projects, especially if the MCU has implemented a little memory (a few K bytes) or if
the project is very simple and will not evolve. In any case we must think carefully to
adopt the best solution.

1.2 Kernel overview

AdAstra RTK is a real-time kernel particularly well suited to mid-range 32-bit
processors: from a few tens of KB to about 1 MB of RAM. In general, applications
using processors with fewer resources do not need to implement a real-time kernel,
and applications requiring significant resources also require more advanced
functions (partitioning, virtual memory ...).

AdAstra RTK has been developed with specific goals:

- Adapted natively to 32-bit ARM Cortex-M processors. This allows having a well-
structured code and not polluted by innumerable sections of conditional
compilation.

- Architecture concepts are deliberately simple to make it understandable to all
people: users: students, maintainers ...

- The coding standard adopted is intended to make the code maintainable,
strengthening its readability and the obligation to comment judiciously. The
adoption of recognized rules (MISRA) goes in the same direction.

The main features of AdAstra RTK are:

- Strictly preemptive and deterministic: The highest priority task is guaranteed to
run and not be interrupted until it gives up its right of execution, or a higher
priority task becomes ready to run.

- Almost unlimited number of tasks (but depending on the available memory).

- Up to 256 priority levels. Priority management is optimized if the number of
levels is less than or equal to the size of the native word (32 levels on a 32-bit
system for example).

- Recursive mutex with priority inheritance, to avoid the phenomenon of
unbounded priority reversal. This mutex has a complete implementation of the
algorithm.

- Complete set of inter-task communication: counting semaphore, mutex, inter-
task signals, message queues, message pool management.

AdAstra RTK - STM32 Edition 10 2022-03

- Timeout management for all potentially blocking APIs. A null or unlimited timeout
is allowed.

- Fast software timer, without additional task.

- It is possible to set the kernel to optimize system ticks, and save energy
(sometimes this is called tickless method, but this is not really tick less).

- Static allocation of all kernel object structures, configurable by the user. Stack
allocation of tasks can also be static, and the user can choose to do without
dynamic memory allocation altogether. This is done using a single API: there is
no functions specific for static allocation and others for dynamic allocation.

- Adjustable to the needs: definitions allow to specify the quantity of each type of
objects of the kernel (tasks, semaphores, queues, etc.).

- Dynamic allocation of memory by the TLSF algorithm which is fast, efficient and
above all deterministic. The kernel only uses dynamic memory allocation on
request from the application. This dynamic allocation can be inhibited during
kernel configuration.

- Debugging capabilities: stack occupancy analysis, deferred log task, resource
utilization statistics, and use of hardware specific characteristics (SWO). Heavy
use of checks by ASSERT, which allows to delete these tests when generating
the final code. Centralized management of fatal or not fatal errors.

- A clear and consistent API (orthogonality :
https://en.wikipedia.org/wiki/Orthogonality_(programming)). Once familiar with
the coding and naming conventions the user can guess the names of the
functions and the parameters to be provided.
For driver development there is no dedicated API for interrupt functions, which
use the standard API. If there is a violation of the restrictions on use by the
interrupt handler this is reported.

- The coding is in ANSI-C, with the least assembler possible: A typical port uses
less than 50 assembler lines. This feature facilitates, in addition to reading and
therefore maintainability, porting to other families of processors.

1.3 The Board Support Package

The AdAstra RTK kernel is strictly independent of the processors. To port the kernel
on a processor family, you must create a specific Board Support Package (BSP) for
this family. The BSP provides:

- A set of predefined functions to adapt during porting

- According to the needs of the user additional functions.

The BSP is often based on software supplied by the manufacturers: ARM CMSIS,
STM32 Low Level Drivers, etc.

A standard BSP is generally adapted to an evaluation board and proposes:

- A console on UART (UART to select from all those of the processor),

- Access to LEDs, and other GPIO outputs,

- Access to buttons, and other GPIO inputs.

https://en.wikipedia.org/wiki/Orthogonality_(programming)

AdAstra RTK - STM32 Edition 11 2022-03

- A standard demonstration application using the elements above

The BSP offers other generic APIs such as:

- Configuration of the system tick, and functions to query or modify it

- Time measurement functions (time stamping)

- Interrupt management

- Debug configuration (SWO…).

1.4 Static or dynamic allocation?

The configuration of the kernel is static: the quantity of each object to be made
available in the kernel (task, mutex, queue, timer ...) is specified during the
configuration, and they are allocated during the compilation. So the size of the
kernel is known from the compilation, and it is certain that these objects will be
available at runtime.

A special case concerns task stacks. Several choices are available:

- Dynamic memory management is not implemented in the kernel. The user must
then himself predict the memory spaces to be used as stack of tasks.

- The dynamic memory management is implemented, but it is possible not to use
it on a case by case basis, which goes back to the previous case.

- Dynamic memory management is implemented and used automatically by the
kernel, the user only communicates the size of each stack.

It is therefore the configuration of the kernel associated with the use made of it
which makes it possible to have an entirely static or dynamic allocation.

1.5 The identifiers

Most objects provide an identifier at the time of their creation (a handle), which
allows them to be referenced for subsequent uses. These identifiers should be
considered as meaningless opaque references outside of the kernel APIs.

1.6 Standard library

The kernel does not implement a standard library such as "newlib" or "newlib-nano",
for several reasons:

- The kernel does not require any of these libraries.

- Some of these libraries and the inclusion files accompanying them are prohibited
by standards such as MISRA.

- The memory resources occupied by these libraries can be incompatible with
some processors.

Some functions of these libraries can be replaced by those provided by the kernel,
such as these:

AdAstra RTK - STM32 Edition 12 2022-03

- aaGetChar Gets a console character

- aaPutChar Send a character to the console

- aaPrintf Equivalent, with some restrictions, to the standard printf ()

- aaPrintfEx Printf on any device

- aaSnPrintf Equivalent to snprintf ().

- aaGets Equivalent to gets () but with the security of fgets()

However, the kernel uses some intrinsic functions of the compilers, which must be
provided by the BSP. The list of these functions is given in the appendix.

The standard library "stdlib.h" provides the dynamic memory management functions
of the malloc() family. These functions rely on the sbrk() system call, which
manages the heap. But the heap is already managed by the kernel.

Therefore, to allow the use of functions of the malloc() familly, the _syscall.c file has
functions rerouting the management of the dynamic memory of the standard library
to the management provided by the kernel.

It should be noted that the use of printf() results in dynamic allocation of several
blocks, and intensive use of the stack. Most of the time it is better to use aaPrintf()
or aaSnPrintf().

1.6.1 1.6.1 Note on using newlib.

Newlib has two main problems when used with a real-time kernel:

- The reentrancy of certain functions: newlib has functions which are not “thread-
safe”.

- The freeing of the memory allocated by newlib when the task which caused this
allocation is deleted.

The problem of re-entrance of functions is easily solved, because planned during
the design of newlib: Just configure AA_WITH_NEWLIB_REENT in aacfg.h. After
that a structure of type _reent is added to the control block of each task, and the
kernel ensures the update of the variable _impure_ptr of newlib at each context
switch.

Newlib has made no provision for freeing some memory blocks it has allocated. You
must therefore be very careful when a task uses newlib functions that allocate
memory and then this task is destroyed: there may be memory leaks!

This is probably because newlib is designed for process / thread based systems.
The memory allocated by newlib is freed automatically only at the end of the
process, by the system and not by newlib.

The model of an RT can be compared to a system with a single process, whose
threads are the tasks. Since the process is never terminated, the memory is not
freed.

AdAstra RTK - STM32 Edition 13 2022-03

If you really want to use all of newlib's features, you'll have to monitor memory
allocations and manage freeing yourself.

AdAstra RTK - STM32 Edition 14 2022-03

1.7 MISRA compatible?

For short no.

Mainly because the applied development cycle is different in some respects from
that described in the 2012 version of this standard.

But the state-of-the-art development rules have been applied, especially to the
coding rules. The coding rules applied are intended to:

- Ensure code performance

- Ensure the ease of reading the code which ensures its reliability and
maintainability.

For that, some rules have been knowingly relaxed:

- Several exit points per function are allowed (rule 15.5). This makes it possible to
control the parameters of the functions by limiting the depth of indentation. A
large depth of indentation is detrimental to the clarity of the code and is error
prone in case of modification of the code.

- Several "break" (rule 15.4) by structure "for" or "while" are allowed. This ensures
greater clarity of the code.

- The use of union (rule 19.2) is as limited as possible: only one place. This use is
necessary for reasons of code performance. The use of this union is always
coherent: the writing then the reading is always done on the same element.

- To respect the encapsulation of data and the opacity of the identifiers, the
conversion of a pointer-to-void type to another type of pointer is allowed (rule
11.5).

AdAstra RTK - STM32 Edition 15 2022-03

1.8 Task management

1.8.1 Creating a task

A task is created with the aaTaskCreate() function. This function has among other
parameters:

- The name of the task.

- The entry point of the task: the name of the function to be executed.

- An argument to be supplied to the function of the task.

- The size of the stack that must be allocated.

- A pointer to the stack. This allows a completely static allocation: the user takes
care of the allocation of the stack at the time of the creation of the task, and the
release of the stack during the destruction of the task. If the stack pointer is
NULL and dynamic memory allocation is allowed, then the kernel takes care of
dynamically managing the stack.

In return for the creation of the task a task identifier is provided to the user, it must
be used with the task management API. A special identifier AA_SELFTASKID
identifies the current task, the actual identifier of the current task can be obtained
with aaTaskSelfId().

The maximum number of tasks handled by the kernel is specified during kernel
configuration (aacfg.h file).

1.8.2 Deleting a task

The destruction of a task can be done by several means:

- The task exits the function specified during creation by return, or by reaching the
end of the function.

- By running aaTaskDelete() with AA_SELFTASKID.

- Another task runs aaTaskDelete() with the task identifier.

A task must be destroyed with great caution, because of the difficulty of recovering
the resources it holds. This is true especially if the destroyed task holds mutexes or
semaphores.

If a task uses a static stack allocated by the user, during the destruction of the task
the aaUserReleaseStack() callback is called. This gives the user the opportunity to
know that a memory block is free and manage it accordingly.

1.8.3 Suspending a task

A task can be suspended by aaTaskSuspend(). In this state, even if it is ready to
execute, it does not.

We can get him back to work with aaTaskResume().

AdAstra RTK - STM32 Edition 16 2022-03

When a task is suspended while it is in a waiting state (aaTaskDelay() for example),
it does not immediately go into a suspended state. It does not go into the
suspended state until the end of the waiting state: end of the delay, expiry of the
timeout, obtaining the resource...

1.8.4 Task priority management

AdAstra can manage up to 256 priority levels, with 0 being the lowest priority and
255 being the highest priority.

AdAstra is strictly preemptive and deterministic: The highest priority ready task is
guaranteed to run and not be suspended until it gives up its right of execution or a
higher priority task becomes ready. This means that a task can prevent all low
priority tasks from running if it does not go to sleep or hangs waiting for resources
for example.

The only exception is interrupts that can, when not inhibited, temporarily suspend
the highest priority active task.

If multiple tasks of the same priority are ready, the one at the head of the list of this
priority runs. It will execute until it gives up its execution right: aaTaskDelay(),
aaTaskYield() or wait for resource for example. At this point it is inserted at the end
of the list, and the task at the head of the list runs. This mechanism allows for a
cooperative "round-robin" management. This respects the strictly preemptive and
deterministic management principle expressed above.

The number of priority levels to manage is configured by AA_PRIO_COUNT in
aacfg.h. The scheduler is more efficient if the number of priorities is at most equal to
the number of bits in a native word of the processor (32 bits on a 32-bit processor).
The general algorithm applies beyond 2 words (64 priority levels on a 32-bit
processor). Limiting the number of priorities saves memory because the kernel
maintains a list by priority.

Priority 0 is reserved for the task "idle" which is executed when no other task is
ready to execute, i.e. it is not possible to create another task of priority 0. The task
"idle" is created automatically upon system initialization, and cannot be destroyed.

A task has a basic priority, which is assigned to it when it is created, or calling
aaTaskSetPriority(). The basic priority can be obtained calling
aaTaskGetBasePriority(). When using a mutex, the priority of a task may change
because of the priority inheritance mechanism. The actual current priority of a task
can be obtained with aaTaskGetRealPriority().

1.8.5 The task states

The tasks are in one of the following states:

aaNoneState These tasks are free, i.e. not created.

aaReadyState These tasks are ready to run. Only one task runs: One of the
tasks with the highest priority, and is in this state.

aaDelayedState These tasks are waiting for a certain amount of time, which
can be infinite.

AdAstra RTK - STM32 Edition 17 2022-03

aaMutexWaitingState These tasks wait for a mutex owned by another task.

aaSemWaitingState These tasks wait for the counter of a semaphore to become
positive and obtain it.

aaSignalWaitingState These tasks are waiting for a combination of their signals to
be positioned by other tasks.

aaQueueWaitingState These tasks are waiting to be able to write or read a
message in a message queue.

aaIoWaitingState These tasks wait for an event in a driver.

aaSuspendedState These tasks are suspended: even if they meet the conditions
to run, they remain inactive.

Suspending a task is a special mechanism:

If a task is in the aaReadyState state when it is paused, it immediately goes into the
suspended state.

If a task is in a pending state when it is paused, it continues to wait, and as soon as
the exit condition of the waiting state is fulfilled it enters the suspended state. Even
if the suspension of the task is carried out in two stages, the task is effectively
suspended as soon as the request for suspension is made.

AdAstra RTK - STM32 Edition 18 2022-03

This diagram shows all legal state transitions for a task.

None
(Free)

Ready

Suspended

Delayed

MutexWait

SemWait

SignalWait

QueueWait

I/OWait

AdAstra RTK - STM32 Edition 19 2022-03

1.9 Interrupts

This section is mainly intended for system or driver developer.

Interrupt handling is reserved for the kernel and drivers, which must include
aakernel.h, which itself includes bspcfg.h which declares interrupt handling
functions:

bspEnableIrq() Allow interrupts

bspDisableIrq() Inhibits interrupts

aaCriticalEnter() Enters a critical section

aaCriticalExit() Leaves a critical section

bspSaveAndDisableIrq() Stores interrupt status word and inhibits interrupts

bspRestoreIrq() Restores the interrupt status word

aaIntEnter() To call when entering an Interrupt function

aaIntExit() To call when leaving an Interrupt function

1.9.1 Types and priorities of interrupts

The kernel allows two types of interrupts.

- The "zero latency" interrupts. These interrupts have the highest priorities,
greater than BSP_MAX_INT_PRIO, and are never disabled by the kernel. The
latency of these interruptions therefore depends only on the hardware.
These interrupts should never call the kernel API.

- The interrupts handled by the kernel, which are generally those used by device
drivers. They have a priority between BSP_MAX_INT_PRIO and
BSP_MIN_INT_PRIO. These interrupts are disabled by the kernel inside critical
sections.

The priority BSP_MIN_INT_PRIO is defined in bsp.h. It is imposed by the number of
bits of the processor interrupt manager priority mask. This is the lowest priority, or
the least priority.

The priority BSP_MAX_INT_PRIO is defined in bsp.h, and can be modified as
needed. This is the highest priority, or the most urgent.

1.9.2 Critical sections

1.9.2.1 Standard critical section

The recommended way to temporarily disable interrupts is to use a standard critical
section: A critical section disables interrupts with priority lower than

AdAstra RTK - STM32 Edition 20 2022-03

BSP_MAX_INT_PRIO. The critical sections are reentrant: you must call
aaCriticalExit() as many times as there was a call to aaCriticalEnter().

1.9.2.2 Fast critical section

The bspSaveAndDisableIrq() and bspRestoreIrq() functions create fast critical
sections (one to two assembly instructions). However, critical sections of this type
are not taken into account by the mechanism for calculating the maximum inhibition
time of the interrupts if it is validated.

These quick critical sections should be reserved for very short sections of code.

It is possible to include a fast critical section in a standard critical section, but the
opposite is forbidden.

Fast critical sections are reentrant.

Example of use:

void fn (void)

{

 aaCpuStatus_t intState ;

 intState = bspSaveAndDisableIrq () ;

 .

 // Critical section code

 .

 bspRestoreIrq (intState) ;

}

1.9.3 Enabling and disabling interrupts

All interrupts can be globally enabled and disabled with bspEnableIrqAll() and
bspDisableIrqAll(). These acts on the general interrupt validation flag of the CPU
and therefore concerns all interrupts, even those called "zero latency". It is therefore
recommended not to use these functions.

Interrupts managed by the kernel can be enabled and disabled with bspEnableIrq()
and bspDisableIrq(). This works on the processor interrupt priority mask.

These two sets of functions are independent.

These functions are not reentrant: The use of these functions must be done with
caution and must be reserved for very short suspensions which do not call for
functions which can themselves use these functions.

One must not interleave a critical section (standard or fast) and these functions:
their use is exclusive.

AdAstra RTK - STM32 Edition 21 2022-03

1.9.4 Interrupt Handler

When writing an interrupt handler it is absolutely necessary to call aaIntEnter() at
the very beginning of the handler, then call aaIntExit() at the end of the handler.

Example:

// SysTick interrupt handler

void SysTick_Handler (void)

{

 aaIntEnter () ;

 aaTick () ;

 aaIntExit () ;

}

On ARM CORTEX-M interrupts are reentrant: several interrupts of increasing
priority can nest.

1.9.4.1 Setting the priority of an interrupt

Managing interrupt priorities can be disturbing at first. Indeed, the relationship
between priorities and their numerical value is not always intuitive. On the other
hand, the MAX and MIN priorities are adjustable, so it is difficult to use predefined
constants to define intermediate priorities.

To unify and simplify these notions an abstraction of the priorities of the interrupts is
used by AdAstra.

The highest priority level is defined by BSP_MAX_INT_PRIO.

The lowest priority level is defined by BSP_MIN_INT_PRIO.

It is agreed that adding an offset to the lowest priority will progress to the highest
priority. And conversely, by subtracting an offset at the highest priority, progress is
made towards the lowest priority.

To implement this notion two functions are used:

bspIrqPrioMaxMinus(x)

The x parameter of this function indicates that we want to get the priority level
which is x lower than the maximum level.

bspIrqPrioMaxMinus (0) corresponds to BSP_MAX_INT_PRIO,
bspIrqPrioMaxMinus (1) corresponds to the level immediately lower than
BSP_MAX_INT_PRIO, etc.

This function is useful for setting the higher interrupt levels.

bspIrqPrioMinPlus(x)

The x parameter of this function indicates that we want to get the priority level
which is x higher than the minimum level.

bspIrqPrioMinPlus (0) is BSP_MIN_INT_PRIO, bspIrqPrioMinPlus (1) is the
level immediately above BSP_MIN_INT_PRIO, and so on.

This function is useful for setting the lower interrupt levels.

AdAstra RTK - STM32 Edition 22 2022-03

Both functions guarantee a valid priority level, in the range BSP_MAX_INT_PRIO to
BSP_MIN_INT_PRIO.

These functions do not allow to initialize constants. For this, two equivalent macros
are defined:

BSP_IRQPRIOMAX_MINUS

BSP_IRQPRIOMIN_PLUS.

Example :

#define TIMER_PRIORITY BSP_IRQPRIOMAX_MINUS (2)

AdAstra RTK - STM32 Edition 23 2022-03

1.10 System timer and low power

AdAstra kernel requires a timer to provide its services. This timer generates an
interrupt, which is necessary for certain functions such as timeout management.

This timer must be provided by the hardware architecture: SysTick (on ARM Cortex-
M architectures), standard timer or low energy timer. It is configured by the BSP.

In usual microcontroller applications, the CPU performs a task continuously. When
the application has nothing to do, the "idle" task of the RTOS is executed: The timer
is periodic, and the consumption is almost constant at a high level.

Some applications need to reduce the power consumption of the system when its
workload decreases. There are several possible approaches.

Put the processor in sleep mode between the system ticks

The first easy approach is to ask the "idle" task to put the CPU to sleep, the CPU
will be woken up every time the system timer or a device throw an interrupt.

This represents a significant gain in consumption. However, if the system timer
frequency is high (usually 1 kHz), the CPU wakes up frequently for next to nothing.

Stretch the system timer.

The idea is to put the CPU sleeping as long as possible, so do not wake up for
useless ticks. This technique is called "tick stretching" because timer interrupts are
no longer periodic.

When the task "idle" must put the CPU to sleep, it asks the kernel to tell how many
ticks it wants to be woken up. This is the shortest timeout or software timer.

The timer is then programmed for this duration, and the CPU is set to sleeping
mode.

If the timer expires the BSP tells the kernel how many ticks has elapsed, and the
kernel updates its state. Then the timer is reconfigured to resume the periodic
rhythm (1 ms for example).

But the CPU can be woken at any time by another interruption than the timer. In this
case you must:

- Calculate how many ticks have elapsed since the CPU was put to sleep, and
warn the CPU to update its status.

- Reconfigure the timer to resume the periodic rhythm (at 1 ms for example).

- Release interrupts, allowing the interrupt waking up the CPU to be processed

All this with a number of constraints:

- The measurement of time must remain accurate. There is no question of losing
a fraction of a tick when the timer is reconfigured, when the CPU is put to sleep
or wakes up. The count of time is therefore the same, whether the ticks are
periodic or stretched.

AdAstra RTK - STM32 Edition 24 2022-03

- AdAstra supports ZLI (Zero Latency Interrupts). These interrupts should not be
inhibited to preserve this functionality. However on ARM Cortex-M, it is
mandatory that the interrupts be inhibited during sleep by the WFI instruction.
The implementation of stretched ticks must inhibit interruptions, but the design
used minimizes interrupt inhibit time.

Nothing is free or easy: To benefit from the energy saving provided by the
stretching of the ticks, it is necessary to accept a higher latency of a few tens of
nano seconds for ZLI interrupts.

- The ideal is to be able to put the CPU to sleep for as long as possible. However,
there is a compromise to be made considering a) the granularity of the tick which
must be fine if one needs a precise measurement of time, b) the number of bits
of the counter of the timer on which the maximum duration of sleep depends.
For example if the counter has 16 bits, and the tick granularity is 1 ms, the
stretch of the tick can put the CPU dormant for up to 32 seconds.

- The nominal frequency of the tick can no longer be changed with
bspSetTickRate(). For performance reasons this frequency is fixed by coding in
the bspTickStretch() function of the BSP, and BSP_TICK_RATE must have the
corresponding value.

The choice to configure the kernel to use the tick stretching is simply done by
setting the value of AA_TICK_STRETCH in the file aacfg.h:

0 Periodic ticks.

1 Tick stretching.

Stretching ticks is handled by the BSP in the function bspTickStretch_() which is
called by the task "idle". This function is part of the BSP because it is dependent on
the timer used.

This function can use either of the above methods.

AdAstra RTK - STM32 Edition 25 2022-03

1.11 Mutual exclusion: The Mutex

A full mutex is an object providing exclusive access to a resource such as a device
or data structure. It is created by aaCreateMutex().

A mutex is a variant of the semaphore but with the following restrictions:

- It can only be used to ensure mutual exclusion

- It can only be given by the task owning it

- It cannot be acquired or given by an interruption

- You cannot flush on a mutex.

On the other hand, it has particular characteristics:

- It can be acquired recursively: the same task can acquire several times the
same mutex, and then release it as many times as it has acquired.

- The mutex uses a task priority inheritance algorithm, to avoid the unbounded
priority inversion phenomenon, which causes a low priority task to prevent
another higher priority task from executing.

The priority inheritance mechanism is expensive in resources. It should consider
many cases, such as tasks owning multiple mutexes, a task changing priority, or a
pending mutex task that aborts on timeout. All of these cases require to recalculate
the priority of the tasks owning mutexes that are also expected by other tasks.

If several tasks must acquire several mutexes, there is a risk of interlocking
(deadlock). The user must implement a strategy to avoid this, for example by
ensuring that all tasks acquire the mutexes in the same order, and release them in
reverse order.

The maximum number of mutexes managed by the kernel is specified during kernel
configuration.

AdAstra RTK - STM32 Edition 26 2022-03

1.12 Semaphores

AdAstra provides a counter-based semaphore, which is useful for guarding a multi-
instance resource, such as an array of multiple elements. It is created by
aaSemCreate().

A semaphore can be seen as a counter. When a task acquires a semaphore using
aaSemTake():

- If the counter is greater than 0, the counter is decremented, and the task can
continue execution.

- If the counter is less than or equal to 0, the task is suspended until the counter
becomes positive or the optional timeout expires.

At the return of aaSemTake() an error code indicates the result of the operation.

Any number of tasks can be queued to acquire the semaphore.

When an interrupt task or function releases a semaphore with aaSemGive():

- If no task is waiting for the semaphore, the semaphore counter is incremented.

- If a task is suspended pending the semaphore, this task is enabled, and returns
with a code indicating the success of the operation. The counter is unchanged

If more than one task is waiting, the highest priority task is selected to be activated.
If the selected task has a higher priority than the current task releasing the
semaphore, the selected task is immediately activated.

A semaphore can be released by an interrupt function, but cannot be acquired by
an interrupt function.

If a task is destroyed while it owns a semaphore, the semaphore remains in the
state, which usually has an unpredictable effect on the application.

The maximum number of semaphores managed by the kernel is specified during
kernel configuration.

In versions of AdAstra-RTK prior to 1.10 there was a variant of

semaphore called simple mutex: a mutex without priority inheritance.

This simple mutex has been removed.

AdAstra RTK - STM32 Edition 27 2022-03

1.13 Inter-task signals

Inter-task signals are an inter-task communication medium, which is very different
from POSIX signals which are more like interrupts to handle errors and exceptions.

Each task has a number of signals, the number of which is defined by the size of
the type aaSignal_t defined in aabase.h. (16 if aaSignal_t is defined as uint16_t for
example).

A task can wait for one or more of its own signals to be positioned. Any task or
interrupt can position a signal in a task. This mechanism is fast and allows for
example a task to be activated at each occurrence of an interrupt, without having to
use a semaphore more expensive in resources.

Two modes are used to wait for a signal:

AA_SIGNAL_AND The task waits until all requested signals are signaled.

AA_SIGNAL_OR The task waits until at least one of the requested signals is
signaled.

When the task returns from aaSignalWait() the signals that were used to trigger the
return are transmitted, and deleted from the task descriptor.

Example: A task whose identifier is mainTaskId waits for 300 ticks for two other
tasks each set a signal with aaSignalSend() (0x80 and 0x40):

 aaSignal_t sigsOut ;

 aaSignalReset ();

 res = aaSignalWait (0xC0, & sigsOut, AA_SIGNAL_AND, 300) ;

If the function returns AA_TIMEOUT, it is possible to examine sigsOut to determine
which spot has not set its signal.

One of the expected tasks is running:

 (void) aaSignalSend (mainTaskId, 0x40) ;

The other expected task is running:

 (void) aaSignalSend (mainTaskId, 0x80) ;

1.14 Dynamic memory management

It is often convenient to use the dynamic memory allocation: malloc(), free(), and so
on.

However, some programming rules may prohibit it. To meet all these needs, three
options are available:

- Do not use dynamic allocation: in this case the functions aaMalloc(), aaFree(),
etc., are not available.

- Use a block allocation: each block can only be allocated once because it cannot
be released. This provides the flexibility of dynamic allocation with aaMalloc(),
but avoids fragmentation or reuse of memory blocks with aaFree() and
aaRealloc(). This is a very common case in embedded system design, for
example, where tasks and buffers are all created once at system startup.

AdAstra RTK - STM32 Edition 28 2022-03

- Full dynamic memory allocation, using the TLSF algorithm.

For dynamic memory allocation the kernel offers the functions:

aaMalloc()

aaFree() TLSF only

aaTryFree() TLSF only

aaRealloc() TLSF only

aaCalloc() TLSF only

These functions are “thread safe”.

1.14.1 TLSF Dynamic memory algorithm

The algorithm used is derived from the Two-Level Segregate Fit (TLSF) whose
description can be found AT http://www.gii.upv.es/tlsf//.

This algorithm has the following advantages in a real time system:

- Deterministic: TLSF has a constant cost in O(1).

- Fast.

- Effective, it limits the fragmentation of memory.

The algorithm has been adapted to processors with little memory. In a standard
implementation each block allocated has a header which contains the management
information of the block (size, chaining ...), and occupies 8 bytes in the general case
of a 32-bit processor. In this implementation the overhead has been reduced to 4
bytes, but in return the size of the manageable memory pool is reduced.

The characteristics of the TLSF allocator are:

- The supplied block is always 8-byte aligned, which makes it compatible with the
alignment required for an ARM stack, for example.

- The header of each block is only 4 bytes.

- The maximum size of the memory partition is 262143 bytes (256 KB). Multiple
partitions of the same size can be used.

- The descriptor block of the partition is taken from the partition itself when it is
initialized.

The space occupied by the descriptor of the memory partition depends on the size
of the memory partition. In the file aatlsf.c it is possible to indicate the maximum size
of the memory space managed with FLI_MAX_INDEX, in order to optimize the size
of the descriptor:

FLI_MAX_INDEX Partition size (bytes) Descriptor size (bytes)

17 262143 444 Bytes, 0.16%

16 131071 408 Bytes, 0.31%

http://www.gii.upv.es/tlsf/

AdAstra RTK - STM32 Edition 29 2022-03

15 65535 372 Bytes, 0.56%

14 32767 336 Bytes, 1.0%

13 16383 300 Bytes, 1.8%

12 8191 264 Bytes, 3.2%

When the user creates a TLSF partition managed by himself (without using the
aaMalloc() API family), a specific function set allows access to it.

1.14.2 Block allocation algorithm

This allocation uses a very fast and very simple algorithm. It is initialized by
providing a block of memory (the memory partition), then it subdivides it on demand,
without fragmentation.

The partition descriptor is small: two 32-bit words for a 32-bit system. This
descriptor is allocated at the beginning of the partition itself.

The allocated blocks have the following characteristics:

- They have a variable size, always multiple of 8 bytes

- They are aligned on an 8-byte boundary.

- They do not have an overhead

- An allocated block cannot be released.

It is possible to use several block allocation partitions at the same time, for example
in different memory area if the microcontroller supports it.

1.14.3 Configuring memory allocation

The configuration of the dynamic memory allocation is done by setting constants in
the file aacfg.h.

It is possible to include either or both of the dynamic allocation algorithms in the
kernel. This is done with:

#define AA_WITH_TLSF 1 // Include TLSF

#define AA_WITH_MEMBLOCK 1 // Include memory block allocator

The function aaMalloc() (as well as the other functions of the family if they are valid)
is generic: it adapts to the algorithm assigned to dynamic allocation. For this one
need to define only one of the constants:

#define AA_WITH_MALLOC_TLSF 1 // Dynamic memory allocation

 // aaMalloc() enabled and use TLSF

#define AA_WITH_MALLOC_BLOC 1 // Dynamic memory allocation

 // aaMalloc() enabled and use bloc

 // allocator

AdAstra RTK - STM32 Edition 30 2022-03

The declaration of the constant AA_WITH_MALLOC_TLSF causes the declaration
of the constant AA_WITH_MALLOC which is used by the kernel to know if the
dynamic allocation of memory is usable.

The aaRealloc() function is complex and it is possible to save its code size by
inhibiting it with the definition of AA_WITH_REALLOC in aacfg.h.

When the dynamic memory management is allowed, the kernel automatically
creates a memory partition with the heap information provided by the linker script
(_heap_hegin and _heap_end), calling aaMallocInit().

If the partition must be placed in a specific place in memory by ignoring the linker
information, three constants must be defined:

#define AA_WITH_USERHEAP 1

#define AA_HEAP_BEGIN xxx // Heap address

#define AA_HEAP_SIZE yyy // Heap byte size

It is then possible for the application to use the functions aaMalloc(), aaFree(), and
so on.

In the case of TLSF allocation the aaMemPoolCheck() function can be used to
check the integrity of the dynamic allocation, which is possible thanks to the
information contained in the descriptor of the partition and the header of each block.

1.14.4 Memory allocation port

The files aatlsf.c and aatlsf.h realize the allocation of dynamic memory TLSF.

The files aamemblock.c and aamemblock.h realize the allocation of dynamic
memory by block.

The API (aaMalloc(), aaFfree() ...) is implemented by the files aamalloc.c and
aamalloc.h.

To change the dynamic allocator just re-implants the file aamalloc.c.

AdAstra RTK - STM32 Edition 31 2022-03

1.15 Software Timers

A software timer can be created by any task, it is then used to call a callback
function after a predetermined time. The callback function is executed in the context
of the system tick interrupt.

A software timer is:

- Created by aaTimerCreate(), in the idle state.

- Configured with aaTimerSet(), to indicate the callback to use as well as the
delay to use in number of tick system.

- Started with aaTimerStart().

- Stopped before its end by aaTimerStop().

- Destroyed by aaTimerDelete().

The prototype of the callback function is:

typedef uint32_t (* aaTimerCallback) (uintptr_t arg) ;

The timer can be used as "one shot": when the callback is called the timer is in the
stopped state. If the callback returns 0 it will remain stopped.

The timer can be periodic: If the callback returns a non-zero value the timer is reset
with the timeout value specified by aaTimerSet() and then restarted.

The callback can reconfigure the timer before returning a non-zero value, which
makes it possible to have a timer with a variable duration.

The callback of a timer is called in an interrupt context. The restrictions applicable to
interrupt drivers therefore apply to this callback: among other things do not take a
semaphore, do not call a blocking API, be as short as possible.

A timer can be used as a watchdog: started at the beginning of a treatment, it can
be restarted during processing to avoid the timer expiry, and then stopped once this
treatment is finished. If the callback is called, the treatment has lasted too long.

uint32_t cbTimer1 (uintptr_t arg)

{

 aaLogMes (“Watchdog %d\n”, arg, 0, 0, 0, 0) ;

}

void fn ()

{

 aaTimerId_t t1 ;

 // Create a timer with a timeout of 20 ticks

 aaTimerCreate (& t1) ;

 aaTimerSet (t1, cbTimer1, 1, 20) ;

 aaTimerStart (t1) ;

 while (! end)

 {

 aaTimerStart (t1) ;

AdAstra RTK - STM32 Edition 32 2022-03

 // Treatment

 }

 aaTimerDelete (t1) ;

}

The maximum number of timers managed by the kernel is specified during kernel
configuration.

AdAstra RTK - STM32 Edition 33 2022-03

1.16 Message queues

Message queues are an inter-task communication tool. They allow:

- A queue has a variable number of messages to be stored in a buffer managed in
FIFO. The maximum number of messages and the maximum message size are
specified when creating the message queue with aaQueueCreate().

- The messages are stored by copying in the message queue buffers.

- The messages can be of variable length, only the useful part of the messages is
recopied, in and out.

- Any task or interrupt can send a message to a message queue. If the queue is
full the task can be blocked with timeout, and if the caller is an interrupt the error
AA_EWOULDBLOCK is returned.

- Any task can read a message in the message queue, and if it is empty the task
will be blocked with timeout. If a read on an empty queue is requested by an
interrupt, or if the specified timeout is 0, the return value is
AA_EWOULDBLOCK.

When creating the message queue the user can provide the address of the buffer
that will be used to store the messages, allowing for static allocation. If the address
is NULL and dynamic memory management is allowed, the queue handles buffer
allocation and release.

Several tasks can wait to write or read a message in a message queue. The flag
parameter of the function aaQueueCreate() allows to specify the order of the tasks:

AA_QUEUE_PRIORITY Tasks are handled in order of priority: the highest priority
task will get the first available message.

AA_QUEUE_FIFO The tasks are managed in their order of arrival. This is the
default mode when creating the queue.

The maximum number of message queues managed by the kernel is specified at
kernel configuration.

A particular case of message queue management occurs when the message
consists of only one pointer. In this case only the pointer is copied, which is fast,
and the information is stored in an external buffer by the application. The address of
the buffer is transferred from the transmitter to the receiver without copying the
message body.

To use this pointers management, create the queue with the
AA_QUEUE_POINTER flag.

To facilitate this type of management it is possible to use the buffer pools.

AdAstra RTK - STM32 Edition 34 2022-03

1.17 Buffer pools

The buffer pool is a mechanism allowing for example the use of message queues
without copying data.

A buffer pool consists of a series of buffers chained in a list, which is the list of free
buffers.

When creating the buffer pool (with aaBufferPoolCreate()) the user can provide the
address of the memory block that will be used to build the buffers, which allows for
static allocation. If the address is NULL and dynamic memory management is
allowed, the pool manages memory allocation and release.

Example of use:

When a task needs a buffer, it requests it from the pool with aaBufferPoolTake(),
the buffer is taken from the list of free buffers. Then the task can use it: fill it with
data and then put it in a message queue by supplying the buffer address to the
queue.

The task reading the message queue receives the buffer address, uses the
contents of the buffer, and then returns it to the pool with aaBufferPoolGive(). This
will put this buffer in the list of free buffers.

The maximum number of buffer pools that the kernel manages is specified during
kernel configuration.

AdAstra RTK - STM32 Edition 35 2022-03

1.18 Board Support Package

The BSP groups the kernel features that depend on the system used. Some
features are accessible to the user through generic functions such as
bspGetTickRate() or bspOutput() for example.

The BSP offers access to some often used resources:

- GPIOs associated with LEDs or buttons. Other GPIOs can be added, for debug
on the oscilloscope for example.

- A generic UART driver to have a console.

- Configure and query the system tick.

In addition to these user functions, the BSP provides kernel support:

- Initialization of the hardware

- System tick support

- Interrupt support

- Management of the task context switch.

1.19 Debug

The provision of tools to facilitate debugging is an important feature of an
embedded system.

AdAstra RTK offers some of these tools: a console, the logMes feature and the use
of the SWO signal of ARM Cortex, a trace system, an AA_ASSERT macro, and
centralized handling of errors.

1.19.1 Console

A console is the basic tool needed for debugging. It is possible to use any UART /
USART available in the processor for this.

The console is configured in aacfg.h (AA_WITH_CONSOLE). In addition it is
necessary to define in the uartbasic.c file the UART / USART which will have to be
managed by the kernel. The console is initialized by the kernel, and the handle of
the corresponding UART is available in the global variable aaConsoleUartHandle.

If a development board is used, it is often convenient to use as the console the
UART routed to the programming / debug probe.

1.19.2 aaLogMes

Showing console traces can be an effective way to debug. However, these traces
tend to change the timing of the application and in that sense they are intrusive.

A low-intrusive trace system is based on the idle task and the aaLogMes() function.

The aaLogMes() function has a syntax similar to that of printf(), but instead of
immediately formatting the message, it places the arguments in a message queue.

AdAstra RTK - STM32 Edition 36 2022-03

This function also has the advantage of being able to be called by an interrupt
function.

In a second step, the idle task extracts messages from the queue to format these
messages and send them. It is possible to choose which device will be sent
messages, most often a UART or SWO.

The timing of the application is undisturbed because:

- The formatting of the messages, which can be time-consuming, is not realized
by aaLogMes() who moreover does not have access to any peripheral, which
prevents him from being possibly blocked.

- The idle task runs with a lower priority than the application tasks, and thus run
during the instants left free by the application.

- The use of SWO is fast and does not involve the use of interrupt as a UART.

The aaLogMes() arguments are not used when the function is called, but later by
the idle task. This means that the arguments must still be valid at this time, which
excludes pointers to volatile data such as pointers or data allocated on the stack.

In the following example, the use of str is invalid because when idle processes the
str message, it may not exist anymore. The use of pStr is valid because the value
pointed to by pStr will not change.

The use of arg is valid because arg is not a pointer and its value will still be valid.

void myFunc (uint32_t arg)

{

 char str [32] ;

 const char * pStr ;

 pStr = “Hello” ;

 aaLogMes (“myFunc %s %s %d\n“, str, pStr, arg, 0,0) ;

}

The message queue used by the trace system has a limited depth. If the application
generates more messages than the idle task can handle, the queue may be full and
in this case messages will be ignored. This is indicated by the message "logMes
lost: xx" where xx is the number of lost messages.

The message queue overflow can for example be caused by a task that generates
messages in a permanent loop: which is not suspended from time to time by waiting
for an I/O, a semaphore, a mutex, or aaTaskDelay().

In AdAstra-RTK kernels prior to version 1.10, the formatting of logMes

messages was handled by a dedicated tLogM task. Now formatting is

handled by the idle task, which saves resources.

AdAstra RTK - STM32 Edition 37 2022-03

1.19.3 Stacks monitoring

When developing an application, problems due to stack stacks can be difficult to
detect. The kernel and the BSP must facilitate the detection of errors in stack
management.

AdAstra-RTK allows to monitor task stacks, i.e. to detect if they are approaching or
exceeding their limits. To validate the stack monitoring of a task, you must provide
the AA_FLAG_STACKCHECK flag when creating the task.

When the AA_FLAG_STACKCHECK flag is provided, the stack is initialized with
words of known value. Monitoring is performed by the kernel during each context
change: (when the task is inactivated) by performing 2 tests:

- Check that the current pointer of the stack is not greater than the limit. This
makes it possible to detect a proven stack overflow.

- Compares words 7 and 8 of the stack with the padding values of the stack. If the
words have a different value, this indicates that the stack usage is very close to
the maximum.

When one of the tests is positive, the kernel calls the aaUserNotify() function which
must be defined by the user (a default implementation is in userInitTask.c). The
arguments of this function let you know which task is impacted and which test is
signaled.

The user can use the aaTaskCheckStack() function at any time to determine the
use of the stack whose monitoring was requested during the creation of the task.

The system stack used by interrupts is independent of any task. It has a dedicated
function to allow its monitoring: bspMainStackCheck() which allows to know the
number of unused words in this stack.

The memory used by the system stack is systematically initialized to a value known
by the BSP, using the limits of the stack provided by the linker.

1.19.4 SWO

The Single Wire Output (SWO) pin is a feature of ARM Cortex. It can be used in
many ways. AdAstra RTK uses it as a very fast UART output (several tens of MBits
/ s), in combination with the ITM mechanism, optimizing the throughput.

The ARM's ITM mechanism allows 8, 16 or 32-bit words to be transmitted through
32 channels (called ARM stimuli) to the SWO pin. Each channel precedes the
transmitted word with a header that allows the receiver to identify the sending
channel. Channel 0 has the particularity of having headers whose value is less than
0x04, and therefore not displayed by a terminal.

If the messages generated by aaLogMes() are sent to SWO by channel 0 of the ITM
one has a readable tracing mechanism with high throughput and very little intrusive
for the application.

The ITM / SWO mechanism is only available in debug mode. For this reason, by
default, the BSP initializes the ITM mechanism and directs the messages generated
by aaLogMes() to it when DEBUG is defined.

AdAstra RTK - STM32 Edition 38 2022-03

To display the traces, it is necessary to have a suitable receiver. For example, it is
possible to use the FTDI C232HM cable, which provides the USB equivalent of a 12
Mbits / s UART.

The BSP provides some functions for:

- Initialize the SWO mechanism: swoInit().

- Emit characters or words: swoSend8(), swoSend16() and swoSend32().

- Send a string terminated by a 0: swoSendStr().

- Use standard output to send a character to channel 0: swoSend(), which is used
for example to direct messages from aaLogMes() to SWO.

1.19.5 The AA_ASSERT macro

The AA_ASSERT macro is defined in aacfg.h, if AA_WITH_DEBUG is set to 1. Its
prototype is:

void assert(scalar expression);

If expression is false (is 0), the bspAssertFailed() function defined by the BSP is
called. This function has a different behavior depending on the presence or absence
of a debugger:

- If the application was launched by a debugger, the application stops in the
debugger, which allows inspecting the cause of the shutdown.

- If the application has not been launched by a debugger, it enters an infinite loop
after inhibiting interrupts.

Note: The assertions of the HAL arrive at the same place.

The bspAssertFailed() function is set with the "weak" attribute by the BSP. This
allows the application to redefine it, and to affect it differently. For example, to light
an LED in case of error, this allows to be alerted even if there is no active debugger.

1.19.6 Centralized handling of errors

Error management is often a difficult task. In the code of the applications it is
necessary to systematically test the returned code of the called functions, and in
case of error, often to raise the error of several levels of functions nesting, then to
make a decision to handle this error.

This generates a large amount of code, which must be checked and tested. In
addition, the code must be read carefully to ensure that all the return values are
tested, which is tedious, with no guarantee of completeness, even if compiling
options may help.

To lighten and systematize these procedures, the AdAstra kernel uses a centralized
management of errors: All the errors recorded by the kernel cause a call to the
bspErrorNotify() function. This function is defined in the BSP with a default behavior,
but it can be redefined by the user to adapt its behavior to particular cases.

AdAstra RTK - STM32 Edition 39 2022-03

The fact that all the errors are directed towards this function guarantee that none
can be forgotten and those are all handled, without imposing any constraint on the
code of the applications. If the centralized error handling is used, this allows the
application to no longer have to test the return values of the kernel functions, since
in case of fatal error the error handling function is called. Moreover in debug mode
this function calls the debugger: the user does not need to set a breakpoint to trap
these errors.

Centralized error handling is configured in aacfg.h, by setting
AA_WITH_ERRORCHECK to one of the following values:

AA_WITH_ERRORCHECK_NONE
There is no centralized error handling, errors are not reported to
bspErrorNotify(), assertion checks are not performed.
This option must be reserved for very specific cases.

AA_WITH_ERRORCHECK_ASSERT
In case of an error, the application generates a breakpoint and calls the
debugger from where the error was detected, which makes it possible
to immediately locate the error.
This option must be reserved for the development phase, during which
the debugger is in use. In case of error while the debugger is not in use
the behavior is not guaranteed (e.g. generation of a "HardFault
Exception").

AA_WITH_ERRORHECK_NOTIFY
This is the most general case: the bspErrorNotify () function is called,
and when using the debugger generates a breakpoint. If the debugger
is not in use, it manages its return according to the flags associated with
the error number. If the return is forbidden it enters an infinite loop after
inhibiting interruptions.

To centralize the errors the aaerror.h file defines error numbers, flags, and macros.

All errors have a different number, and are associated with flags to configure the
processing. These flags are:

AA_ERROR_FATAL_FLAG
The error is flagged fatal: normally the application is no longer able to
continue to run if such an error occurs and the application ignores it.

AA_ERROR_NORETURN_FLAG
After this error, the bspErrorNotify() function should not return.

AA_ERROR_FORCERETURN_FLAG
After this error the function bspErrorNotify() can return, even if the flag
AA_ERROR_NORETURN_FLAG is also present. In other words
AA_ERROR_FORCERETURN_FLAG has priority over
AA_ERROR_NORETURN_FLAG.

 This flag allows after bspErrorNotify() reported the error to let the
application handle it.

The macros used for the centralized handling of errors allow several operations:

AdAstra RTK - STM32 Edition 40 2022-03

AA_ERRORNOTIFY (errorNumber)

This macro is the basis of the centralization of errors. It handles the
report of the error according to the value of AA_WITH_ERRORCHECK:
breakpoint of the debugger or call of bspErrorNotify().

This macro always uses AA_ERROR_NORETURN_FLAG, so the
bspErrorNotify() function should not return.

However if it is necessary that the application continues after the
signaling of this error the flag AA_ERROR_FORCERETURN_FLAG can
be used.

AA_ERRORASSERT (test, errorNumber)

This macro performs a test and if the test result is false, call
AA_ERRORNOTIFY(errorNumber).

In this use case the bspErrorNotify() function should not return, so do not
use AA_ERROR_FORCERETURN_FLAG.

AA_ERRORCHECK (test, returnValue, errorNumber)

This macro makes it possible to perform a test similar to
AA_ERRORASSERT, and the bspErrorNotify() function must return.
After reporting the error a return to the calling function with the return
value returnValue is executed. For this it systematically associates
AA_ERROR_FORCERETURN_FLAG with errorNumber.

The macro AA_ERRORCHECK has the following pseudo code:

if (! (test))

{

 AA_ERRORNOTIFY ((errorNumber) | AA_ERROR_FORCERETURN_FLAG);

 return returnValue ;

}

It is sometimes necessary to insert code in the processing of the error, before
returning to the calling function. For this we can use the following pseudo code:

if (! (test))

{

 // User code

 AA_ERRORNOTIFY ((errorNumber) | AA_ERROR_FORCERETURN_FLAG);

 // User code

 return returnValue ;

}

Some error numbers are reserved for the application in the file aaerrors.h. The
application can thus benefit from the centralization of error handling by using these
error numbers and the macros defined in this file.

AdAstra RTK - STM32 Edition 41 2022-03

1.19.7 Traces

The traces are described in a dedicated chapter.

AdAstra RTK - STM32 Edition 42 2022-03

2 Traces

AdAstra provides a built-in kernel trace mechanism. These traces make it possible,
among other things, to follow in real time the kernel API used by the tasks and the
interrupts. Traces are therefore more suitable for studying the behavior of
applications.

2.1 Traces configuration

Traces are allowed globally at the time of kernel compilation by the definition of
AA_WITH_TRACE in aacfg.h:

AA_WITH_TRACE = 0 No trace is generated, which allows to get the kernel in
release mode.

AA_WITH_TRACE = 1 The traces are generated.

When AA_WITH_TRACE is 1 it is possible to choose which traces will be generated
by setting the various constants AA_WITH_T_xxx to 0 or 1. For example :

#define AA_WITH_T_IOWAIT 1 // Task waiting I/O task id

#define AA_WITH_T_INTENTER 0 // Interrupt enter irq num

#define AA_WITH_T_INTEXIT 0 // Interrupt exit irq num

- The tasks that wait for an event from a driver will be traced, and the trace
parameter is the identifier of the task.

- The interrupts will not be traced, and the parameter of these traces is the
interrupt number.

Traces are numerous, more than 70, and some may have a high frequency. It is
recommended to select only the necessary traces.

2.2 Enabling traces

By default the traces are not enabled. To do this, use the aaTraceEnable(1)
function. The aaTraceEnable(0) function disable traces.

This makes it possible to generate the traces exactly when it is necessary.

While enabling traces, information on the tasks already created are emitted, this
allows an easier exploitation of these traces. This enabling may take a little longer
than other traces.

2.3 Traces implementation

When designing the trace mechanism, compromises must be made:

- The traces must be as extensive as possible, in order to provide the information
needed to validate the application or to solve the problems encountered.

AdAstra RTK - STM32 Edition 43 2022-03

- The traces must be the least intrusive possible: change as little as possible the
temporal behavior of the kernel for example.

- Use with a debugger, or in release build.

- The traditional means used to record traces are either an array in memory, or
real-time broadcast.

The array in memory necessarily has a limited size, but modifies very little the
temporal behavior of the kernel.

The real-time broadcast allows long-term recordings, but is more or less intrusive
depending on the device used.

There is no perfect solution. Therefore the mechanism is conceived in two parts:

- Traces calls predetermined functions, with parameters.

- These functions do not exist as such: in the aabase.h file these functions are
defined as macros that must be implemented to perform the trace.

Thus the user can implement a storage or transmission of traces according to the
protocol he chooses.

2.4 User traces

The set of macros and trace functions can be extended by the user to transmit
specific information.

The following traces are predefined and can be used freely by the application:

aaTraceUser1_1x8 (arg) 1 paramètre 8 bits

aaTraceUser1_2x8 (arg1, arg2) 2 paramètres 8 bits

aaTraceUser1_1x8_1x16 (arg1, arg2) 1 paramètre 8 bits et un de 16

aaTraceUser1_1x32 (arg) 1 paramètre 32 bits

aaTraceUser2_1x8 (arg)

aaTraceUser2_2x8 (arg1, arg2)

aaTraceUser2_1x8_1x16 (arg1, arg2)

aaTraceUser2_1x32 (arg)

The text and display format of user traces can be configured for viewing by the
aaView software.

2.5 Trace example

The aatrace.c file is an example of functions associated with macros in the
aabase.h file. The assumptions that have been retained to design this file are:

- Using the SWO link to issue the traces. It is a fast link (currently 12 Mbits / s is
less than a micro second per octet) which has a small FIFO. The disadvantage
is that it can only be used if it is configured by a debugger.

- The lowest data stream. For this purpose the identifiers of the objects (tasks,
semaphores ...) are limited to 8 bits. Therefore it is not possible to plot more than
255 objects of each type, but this covers the vast majority of applications on the
type of processor concerned.

AdAstra RTK - STM32 Edition 44 2022-03

- Trace dating uses the aaTsGet() function and uses a 32-bit word. With this
function that uses the cycle counter of the CPU (Except on Cortex M0(+)), the
dating is very accurate, but loops after a relatively short time: The application
that receives the trace must take this into account.

The traces use the stimulus port 1, which is compatible with the SWO
implementation of the aaLogMes() task that uses the stimulus port 0. Therefore the
SWO output may contain a mixture of traces and messages generated by
aaLogMes(). Traces take precedence over log messages.

It is easy to consider modifying this file to use, for example, a serial link, by
emulating the ITM protocol, which would make it possible to use the traces without
debugging.

2.6 The aaVieew application

The aaVieew application is a Microsoft Windows console application that can
receive traces from a serial link and display them in clear.

The protocol used is ITM, which allows log traces and messages to be displayed.

The traces are displayed in real time, but the speed of display can hinder their
analysis. In this case several approaches are possible:

- If the application manages the traces with aaTraceEnable() the traces can be
stopped and analyzed.

- Otherwise it is possible to select the traces and copy them in a text editor such
as Notepad ++ to save them and analyze them in deferred time.

The aaView application uses the aaView.ini configuration file by default. This allows
you to specify the COM serial link number, its baud rate, the MCU frequency, and
the display formats for user traces.

Example configuration file:

[COM]

comPort = 6

baudrate = 12000000

; Time stamp frequency in Mhz

tsClock = 168

[USER1_1x8]

text = myUSER1_1x8

format = %u

[USER1_2x8]

text = myUSER1_2x8

format = %u %u

[USER1_1x8_1x16]

text = myUSER1_1x8_1x16

format = %u %u

AdAstra RTK - STM32 Edition 45 2022-03

[USER1_1x32]

text = myUSER1_1x32

format = %u

[USER2_1x8]

text = myUSER2_1x8

format = %u

[USER2_2x8]

text = myUSER2_2x8

format = %u %u

[USER2_1x8_1x16]

text = myUSER2_1x8_1x16

format = %u %u

[USER2_1x32]

text = myUSER2_1x32

format = %u

aaView command line syntaxe :

aaView [-com N] [-br B] [-fr MHz] [-c filepath]

It allows you to specify:

- The number of the COM serial link

- His baud rate

- The frequency of the MCU

- The path of a configuration file.

The parameters present on the command line take precedence over the parameters
of the configuration file.

AdAstra RTK - STM32 Edition 46 2022-03

Trace example:

// aaView V1.2

// Configuration file: .\aaView.ini

// COM6 12000000 bauds, MCU 168 MHz

// Hit 'q' then enter to quit

 202139348 0.0us TASKINFO ta 0 pr 0 tIdle

 202139586 1.4us TASKINFO ta 1 pr 1 tLogM

 202140782 7.1us TASKINFO ta 2 pr 2 tInit

 202143162 14.2us TASKINFO ta 3 pr 15 tLeds

 202146151 17.8us INTENTER it 38

 202152167 35.8us TASKIOWAIT ta 2

 202152523 2.1us TSWITCH ta 2 -> ta 0

 202233642 482.9us INTENTER it 38

 202321081 520.5us INTENTER it 38

 202408582 520.8us INTENTER it 38

 202496043 520.6us INTENTER it 38

 204595561 520.7us INTENTER it 38

 204683053 520.8us INTENTER it 38

 204770521 520.6us INTENTER it 38

 204858023 520.8us INTENTER it 38

 204945491 520.6us INTENTER it 38

 205032961 520.7us INTENTER it 38

 205120459 520.8us INTENTER it 38

 205207921 520.6us INTENTER it 38

 205295401 520.7us INTENTER it 38

 235177217 177.9ms TASKREADY ta 3

 235177651 2.6us TSWITCH ta 0 -> ta 3

 235178107 2.7us TASKDELAYED ta 3

 235178360 1.5us TSWITCH ta 3 -> ta 0

 258566909 139.2ms INTENTER it 38

 258567247 2.0us TASKREADY ta 2

 258567633 2.3us TSWITCH ta 0 -> ta 2

 258568323 4.1us MSG Trace stop

AdAstra RTK - STM32 Edition 47 2022-03

3 Writing an application

This chapter explains the initialization mechanisms of the kernel, and then how to
start the execution of an application.

3.1 Kernel configuration

The kernel is configured with the aacfg.h file, which contains definitions, the main
ones being:

AA_PRIO_COUNT The count of priorities that the kernel must handle. This
number must be between 3 and 256. The performance
is optimal with a number at most equal to the number of
bits of a word of the processor (for example 32 if the
processor manages 32-bit words).

AA_TASK_MAX The count of tasks required for the application. This
number is independent of the number of priorities
handled by the kernel.

AA_MUTEX_MAX The count of mutexes needed by the application.

AA_SEM_MAX The count of semaphores needed by the application.

AA_TIMER_MAX The count of timers needed by the application.

AA_QUEUE_MAX The count of tails required by the application.

AA_BUFPOOL_MAX The count of buffer pools needed by the application.

AA_WITH_LOGMES et AA_LOGMES_MAXBUF
aaLogMes() configuration.

AA_INIT_xxx The parameters needed to create the first task of the
application.

AA_WITH_CONSOLE Set the characteristics of the standard output as
aaPrintf().

The following definitions set the measure and debug functions:

AA_WITH_ARGCHECK Inserts tests on the validity of the parameters of the
main functions: mutex, semaphore, queue, pool buffer...

AA_WITH_DEBUG Validates AA_ASSERT controls in the kernel and in the
application.

AA_WITH_TASKSTAT Calculates the CPU usage time for each task.

AA_WITH_CRITICALSTAT Calculates the maximum duration of a critical section
(not implemented)

The use of these very useful features is intrusive: they can disrupt the timing of
tasks and degrade to a certain extent the performance of the kernel.

AdAstra RTK - STM32 Edition 48 2022-03

The following definitions set the dynamic memory management. See also Dynamic
memory management.

AA_WITH_TLSF If set to 1 indicates that TLSF algorithm is implemented.

AA_WITH_MALLOC_TLSF If set to 1 indicates that dynamic memory management
uses the TLSF algorithm.

AA_WITH_REALLOC If set to 1 indicates that the realloc feature is
implemented. This feature is optional because it takes
up a lot of code and is rarely useful in an embedded
system.

AA_WITH_MEMBLOCK If set to 1 indicates block allocation is implemented.

AA_WITH_MALLOC_BLOC If set to 1 indicates that dynamic memory management
uses the block allocation algorithm

AA_WITH_MALLOC_BLOC_ERRORFREE If set to 1 indicates a fatal error should
be triggered if aaFree() is used, if set to 0 indicates that
aaFree() does nothing.

There are other definitions concerning for example the printing of floats, the use of
newlib… Refer to the aacfg.h file.

Centralized management of fatal errors: see §1.19.6 "Centralized handling of
errors".

The configuration of the heap:

AA_WITH_USERHEAP Set to 0 indicates that the heap occupies all available
memory between the BSS section and the system
stack. This is defined by the linker's script.

Set to 1 indicates that the user wants to set the location
and size of the heap with the definitions
AA_HEAP_BEGIN and AA_HEAP_SIZE.

Configuration of traces: see Traces.

3.2 System initialization

The system initialization mechanism is explained here for an ARM Cortex-M
system.

Several files are used:

vectors_xxx.c This file contains the CPU interrupt and exception vector table. In
particular the 2 vectors used for startup:

Vector 0 contains the address of the MSP stack (main stack)

Vector 1 contains the address of the first function to call: _start().

This information is provided by the linker script.

AdAstra RTK - STM32 Edition 49 2022-03

startup.c Contains the _start() function that is the first called when starting
the processor. After initialization, it calls bspMain().

bsp.c Contains functions called from _start() for minimal hardware
initialization: clock, FPU ...

system_stm32xxx File provided by the processor producer with the SystemInit()
function.

The system initialization process is as follows:

- At the start of the processor the control is transferred to the function whose
address is in the interrupt vector 1, which is _start() which:

- Calls bspSystemInit_(): Calls SystemInit(), and sets the vector table in the right
place (in RAM if necessary). Performs any operations to be performed at the
earliest after the start of the processor

- Uses linker information to initialize initialized and uninitialized data sections
(BSS) in different RAM areas.

- Call bspHardwareInit_(): configure FPU, system clock,
NVIC_SetPriorityGrouping.

- Call bspMain() which which has no return.

- bspMain() performs some initializations of the hardware and the BSP. And then
Calls aaMain() which is the entry point of the kernel and which has no return.

Hardware FPU configuration:

In the Eclipse C / C ++ Build / Settings / Target Processor configuration select:

- Float ABI : FP instructions (hard)

- FPU type : fpv4-sp-d16 (for Cortex M4)

This allows the core_cm4.h file to generate the constant __FPU_USED which is
itself used by bsp.c to manage the FPU.

Software FPU configuration, when you do not want to use a real number:

In the Eclipse C / C ++ Build / Settings / Target Processor configuration select:

- Float ABI : Toolchain Default

- To print floating numbers with nanolib printf(), add "-u _printf_float" to the linker
command line. aaPrinf() can also print float values.

3.3 Kernel initialization

The initialization of the kernel is done by aaMain() which is in aaMain.c.

The sequence of initialization operations is as follows:

- If AA_USART_CONSOLE is set in aacfg.h the UART console link is initialized,
the outputs of aaPrintf() and aaLogMes() are directed to this console.

AdAstra RTK - STM32 Edition 50 2022-03

Note: If DEBUG is set, the BSP directs the outputs of aaLogMes() to the SWO
output.

- Initialize AdAstra RTK by calling aaInit().

- Displays the banner defined in the BSP with bspBanner()(), if
BSP_WITH_BANNER is defined to 1 in bspcfg.h

- Initializes the dynamic memory allocation according to what is configured

- Creates the "idle" task of priority 0.

- Initializes the additional components: queues, timers, ...

- Created the first task with the configuration defined in aacfg.h by constants
AA_INIT_xxx.

- Start the kernel by calling aaStart().

The first task continues kernel initializations that require the kernel to be started,
and then calls the userInitTask() function that must be defined by the user.

3.4 Application initialization

The first task performed by the kernel calls the userInitTask() function, written by the
user, which is also the entry point of the first user task. Its configuration is defined in
aacfg.h by constants AA_INIT_xxx.

This function is called after the complete initialization of the system, the set of
resources is therefore usable.

In most cases this function realizes:

- A change of priority of the task so that it corresponds to the need of the
application (if the priority is not set in aacfg.h).

- Initialization of the application environment.

- Create the other tasks of the application.

The userInitTask() function has the prototype of a task function, i.e.:

void userInitTask (uintptr_t arg) ;

The stack size of the first task is defined by AA_INIT_STACK_SIZE. This stack is
allocated dynamically if AA_WITH_MALLOC is set and is equal to 1. Otherwise a
static array is automatically allocated.

AdAstra RTK - STM32 Edition 51 2022-03

3.5 STMicroelectronics Hardware Abstraction Layer

The HAL supplied by STMicroelectronics is not designed to coexist with an RTOS.

The main problem is that the HAL configures the systick timer, while this is handled
by the kernel in due time. STM recommends using another timer dedicated to HAL.
But you do not have to use two timers to do the same thing twice.

To work around this problem and use HAL, the user must:

- Add the USE_HAL_DRIVER preprocessor symbol. This includes the initialization
functions of HAL and informs the BSP to call HAL_IncTick ().

- Do not use HAL_Init () or HAL_SYSTICK_Config (). The kernel performs the
appropriate initializations.

- Call HAL_MspInit () in the first task of the user, before calling any other function
of the HAL. As long as the kernel is not started the systick timer is stopped.
Initializing the HAL once the kernel has started allows for proper operation of the
timeout loops used by the HAL.

- Do not use HAL_SuspendTick () / HAL_ResumeTick (). This disrupts the
operation of the real-time kernel. These functions are redefined by the kernel
with an AA_ASSERT (0) to warn the user when used.

If the HAL is not used, remove the USE_HAL_DRIVER symbol from the
preprocessor.

AdAstra RTK - STM32 Edition 52 2022-03

4 Reference Manual

4.1 Miscellaneous

aaVersion

uint32_t aaVersion (void)

Description TOC §↑

This function returns the kernel version as 2 values in an integer 0xVVVVRRRR:

- VVVV Kernel version.

- RRRR Kernel revision.

Example

- 0x00010000 is version 1.0.

- 0x00020008 is version 2.8

Return value

The kernel version

AdAstra RTK - STM32 Edition 53 2022-03

4.2 Task management

aaTaskCreate

aaError_t aaTaskCreate (uint8_t prio,

const char * pName,

aaTaskFunction pEntry,

uintptr_t arg,

bspStackType_t * pStack,

uint16_t stackSize,

uint8_t flags

aaTaskId_t * pTaskId)

Description TOC §↑

This function allows you to create a task.

prio The priority of the task is between 0 and AA_PRIO_COUNT-1.
Priority 0 is reserved for the task idle, and AA_PRIO_COUNT is
the number of priority levels managed by the kernel..

pName A pointer to a string that is the name of the task. The maximum
size is AA_TASK_NAME_SIZE, including the final 0.

pEntry A pointer to the function the task should execute.

arg The pEntry function argument.

pStack Pointer to the memory area that will serve as stack for the task. If
this pointer is non-NULL the user takes care of the allocation of
the stack at the time of the creation of the task, and the release
of the stack during the destruction of the task. This allows having
a completely static allocation.

If the stack pointer is NULL and dynamic memory allocation is
allowed, then the kernel takes care of dynamically managing the
stack.

The stack must be aligned to a multiple of 8 bytes (ARM).

stackSize The size of the memory area pointed to by pStack, in number of
words of type bspStackType_t.

flags Some flags :

AA_FLAG_STACKCHECK Enable stack monitoring for this
task

AA_FLAG_SUSPENDED The task is created in the
suspended state. You have to use
aaTaskResume() to start its
execution.

AdAstra RTK - STM32 Edition 54 2022-03

pTaskId A pointer to a variable that will contain the identifier on the task
created when the function returns.

The created task is immediately active: if it has a higher priority than the current
task, the current task will immediately be preempted by the new task.

Return value

AA_ENONE No error.

AA_EARG Invalid argument: priority or stack.

AA_EDEPLETED There is no more job descriptor available.

AA_EMEMORY Stack memory allocation error.

aaTaskDelete

aaError_t aaTaskDelete (aaTaskId_t taskId)

Description TOC §↑

This function allows you to delete a task: release its resources, and place its
descriptor in the queue of free task descriptors.

taskId The identifier of the task to complete. If the identifier is
AA_SELFTASKID, then the calling task is deleted.

If a task exits the specified function when created by return, or has reached the end
of the function then aaTaskDelete (AA_SELFTASKID) is implicitly called.

If a task to delete uses a static stack allocated by the user, then the
aaUserReleaseStack() callback is called. This gives the user the opportunity to
know that a memory block is free and manage it accordingly.

If a task is deleted while it has a mutex or semaphore, these remain in the state,
which can cause unpredictable behavior of the application. The same thing can
happen if the deleted task was waiting in a driver (state aaIoWaitingState).

If a task is destroyed by another task, the task stack and descriptor are released
immediately. If the task destroys itself, this is not possible, and the releases will be
done later by the idle task.

Return value

AA_ENONE No error.

AA_EARG Invalid argument: priority or stack.

AA_ESTATE The task is in an unknown state that does not allow the
completion.

AdAstra RTK - STM32 Edition 55 2022-03

aaTaskIsId

aaError_t aaTaskIsId (aaTaskId_t taskId)

Description TOC §↑

This function checks that the task identifier provided is valid:

- The identifier corresponds to a task

- The task exists (has been created and has not been destroyed).

taskId The task identifier to check.

Return value

AA_ENONE The identifier is valid.

AA_EFAIL The identifier is not valid.

aaTaskGetBasePriority

aaError_t aaTaskGetBasePriority (aaTaskId_t taskId,

uint8_t * pBasePriority)

Description TOC §↑

This function allows you to know the basic priority of the task. The basic priority is
the one that is specified when creating the task, and that is used when the priority
inheritance mechanism is not active.

taskId The identifier of the task that must be prioritized. If the identifier is
AA_SELFTASKID, then this is the calling task.

pBasePriority A pointer to a variable in which the value of the priority will be
placed.

Return value

AA_ENONE No error.

AA_EARG Invalid argument.

AdAstra RTK - STM32 Edition 56 2022-03

aaTaskGetRealPriority

aaError_t aaTaskGetRealPriority (aaTaskId_t taskId,

uint8_t * pRealPriority)

Description TOC §↑

This function allows you to know the current priority of the task. The current priority
can be the basic priority or inherited priority.

taskId The identifier of the task that must be prioritized. If the identifier is
AA_SELFTASKID, then this is the calling task.

pRealPriority A pointer to a variable in which the value of the priority will be
placed.

Return value

AA_ENONE No error.

AA_EARG Invalid argument.

aaTaskSetPriority

aaError_t aaTaskSetPriority (aaTaskId_t taskId,

uint8_t newBasePriority)

Description TOC §↑

This function is used to change the basic priority of the task. The basic priority is the
one that is specified when creating the task, and is used when the priority
inheritance mechanism is not active.

tasked The identifier of the task whose priority must be changed. If the
identifier is AA_SELFTASKID, then this is the calling task.

newBasePriority The new task priority between 1 and AA_PRIO_COUNT-1.

Return value

AA_ENONE No error.

AA_EARG Invalid argument.

aaTaskSuspend

aaError_t aaTaskSuspend (aaTaskId_t taskId)

Description TOC §↑

The specified task is placed in the suspended state: even if it is ready to execute, it
does not. It cannot resume its activity until it has been reactivated by
aaTaskResume().

AdAstra RTK - STM32 Edition 57 2022-03

If a task is suspended while waiting for a resource (mutex, semaphore ...) it will not
be suspended until after obtaining the resource, which then becomes unavailable
for other tasks during the whole suspension of the task having got the resource.

Return value

AA_ENONE No error.

AA_EARG Invalid argument.

aaTaskResume

aaError_t aaTaskResume (aaTaskId_t taskId)

Description TOC §↑

The specified task is reactivated if it is in the suspended state.

Return value

AA_ENONE No error

AA_EARG Invalid argument

aaTaskDelay

void aaTaskDelay (uint32_t delay)

Description TOC §↑

The current task is put in wait state for the specified duration in number of system
ticks. This causes the activation of the highest priority active task, if there is one.

The pending task does not consume CPUs.

Delay The wait time in ticks, from 0 to 0xFFFFFFFE. The value
AA_INFINITE specifies an infinite duration.

Return value

None

AdAstra RTK - STM32 Edition 58 2022-03

aaTaskWaikeUp

void aaTaskWakeUp (aaTaskId_t taskId)

Description TOC §↑

Stops the waiting for a task that called aaTaskDelay(). The specified task is
immediately placed in the ready state, and cannot know that it has been woken up
earlier than expected.

This function cannot stop the waiting for a task waiting for an event: signal,
semaphore, mutex, queue, etc.

Return value

None

aaTaskSelfId

aaTaskId_t aaTaskSelfId (void)

Description TOC §↑

Get the identifier of the calling task.

Called from an interrupt function, it returns the identifier of the interrupted task (the
"current" task).

Return value

The identifier value of the calling task.

aaTaskYield

void aaTaskYield (void)

Description TOC §↑

Allows the current task to grant its execute right to another task, which has the
same priority. The current task is placed at the end of the list of tasks ready with this
priority.

If there is no other task with the same priority, the current task continues executing.

This function makes it possible to manage the execution time in a cooperative
manner between tasks of the same priority.

Return value

None

AdAstra RTK - STM32 Edition 59 2022-03

aaTaskGetName

const char * aaTaskGetName (aaTaskId_t taskId,

const char ** ppName)

Description TOC §↑

Get a pointer to the name of the specified task.

Example, to get the name of the current task:

const char * pStr ;

(void) aaTaskGetName (AA_SELFTASKID, & pStr) ;

Return value

AA_ENONE No error.

AA_EARG Invalid argument.

aaTaskCheckStack

aaError_t aaTaskCheckStack (aaTaskId_t taskId,

uint32_t * pFreeSpace)

Description TOC §↑

Allows you to get the unused space in the stack of the specified task, in number of
words of type bspStackType_t.

The AA_FLAG_STACKCHECK flag must have been specified when the task was
created, which caused the task's stack to be initialized with a marker.

This function, whose execution time may be important, does not use a critical
section, so the specified task must not be destroyed during the execution of this
function.

Return value

AA_ENONE No error.

AA_EARG Invalid argument.

AA_ESTATE AA_FLAG_STACKCHECK was not specified for this task.

AdAstra RTK - STM32 Edition 60 2022-03

aaTaskInfo

aaError_t aaTaskInfo (aaTaskInfo_t * pInfo,

uint32_t size,

uint32_t * pReturnSize,

uint32_t * pCpuTotal,

uint32_t * pCriticalUsage,

uint32_t flags)

Description TOC §↑

Provides information and statistics on tasks.

pInfo Address of an array of structures that will be filled by the function

size Number of elements in the pInfo structure. It is useful if this
number is at least equal to the number of tasks created.

pReturnSize Number of pInfo elements used by the function.

pCpuTotal Address of a variable in which the time in micro seconds used by
the tasks will be placed since the last call to aaTaskStatClear().

pCriticalUsage The address of a variable in which will be placed the time spent in
the longest critical section since the last call to aaTaskStatClear().

flags not used.

The information structure is as follows:

typedef struct

{

 aaTaskId_t taskId ; // Id of this task

 aaTaskState_t state ;

 uint8_t priority ; // Effective priority

 uint8_t basePriority ;

 uint32_t cpuUsage ; // Count of CPU usage

 uint32_t stackFree ; // Count of unused words

 // in the task stack

} aaTaskInfo_t ;

The names of the task states are available in the table aaTaskStateName[].
Example:

aaTaskInfo_t info ;

aaPrintf (“%u %s\n”, info.state, aaTaskStateName[info.state]);

This function uses a critical section so that the status of all tasks is consistent. If the
number of tasks is important, the duration of the critical section may be important.

Return value

AA_ENONE No error.

AdAstra RTK - STM32 Edition 61 2022-03

aaTaskStatClear

void aaTaskStatClear (void)

Description TOC §↑

Initializes to 0 the statistics of the tasks that can be obtained with aaTaskInfo().

Return value

None.

AdAstra RTK - STM32 Edition 62 2022-03

4.3 Mutex

aaMutexCreate

aaError_t aaMutexCreate (aaMutexId_t * pMutexId)

Description TOC §↑

Create a mutex. This mutex provides exclusive access to a resource such as a
device or data structure.

It has special characteristics:

- It can be acquired recursively: the same task can acquire several times the
same mutex, and then release it as many times as it has acquired.

- The mutex uses a task priority inheritance algorithm, to avoid the priority
inversion phenomenon, which causes a low priority task to prevent another
higher priority task from executing.

- If a task is destroyed while holding a mutex, it will not be rendered, and the
resource whose access is protected remains locked.

- If a task is suspended while holding a mutex, the mutex remains acquired by the
task.

pMutexId Pointer to a variable that will receive the mutex identifier.

Return value

AA_ENONE No error, the mutex is created.

AA_EDEPLETED There is no more mutex descriptor available.

AA_ENOTALLOWED Not allowed from an interrupt function.

aaMutexDelete

aaError_t aaMutexDelete (aaMutexId_t mutexId)

Description TOC §↑

Delete a mutex, and place its descriptor in the list of free mutex descriptors.

The mutex must be free to be deleted.

Return value

AA_ENONE No error, the mutex is deleted.

AA_ESTATE The mutex is not in a state of being destroyed (acquired by a
task).

AA_ENOTALLOWED Not allowed from an interrupt function.

AdAstra RTK - STM32 Edition 63 2022-03

AA_EARG Invalid mutex identifier.

aaMutexIsId

aaError_t aaMutexIsId (aaMutexId_t mutexId)

Description TOC §↑

This function checks that the mutex identifier provided is valid:

- The identifier corresponds to a mutex

- The mutex exists (has been created and has not been destroyed).

mutexId The mutex identifier to check.

Return value

AA_ENONE The identifier is valid.

AA_EFAIL The identifier is not valid.

aaMutexTake

aaError_t aaMutexTake (aaMutexId_t mutexId,

uint32_t timeOut)

Description TOC §↑

This function is used to acquire the mutex. If the mutex is already acquired by
another task, the calling task is suspended until the mutex is acquired or the timeout
expires.

mutexId The identifier of the mutex

timeout The value of the system tick timeout, from 0 (no wait) to
0xFFFFFFFE or AA_INFINITE.

This function cannot be used by an interrupt handler.

Return value

AA_ENONE No error, the mutex is acquired

AA_EARG Invalid argument.

AA_ENOTALLOWED Unauthorized operation, e.g. from an interruption.

AA_EWOULDBLOCK Mutex not acquired, specified timeout equal to 0.

AA_ETIMEOUT Mutex not acquired, return with timeout.

AdAstra RTK - STM32 Edition 64 2022-03

AA_EFAIL Mutex counter overflow.

aaMutexTryVTake

aaError_t aaMutexTryTake (aaMutexId_t mutexId)

Description TOC §↑

Try to acquire the mutex, with a timeout of 0.

This is a macro equivalent to: aaMutexTake (mutexId, 0).

This macro cannot be used by an interrupt handler.

Return value

The same as aaMutexTake().

aaMutexGive

aaError_t aaMutexGive (aaMutexId_t mutexId)

Description TOC §↑

This function allows to releases the specified mutex. If the recursion counter drops
to 0, the mutex is actually released, and if another task is waiting for that mutex it
acquire the mutex.

If another task acquire the released mutex and this task has a higher priority than
the base priority of the calling task, the other task is immediately activated.

This function cannot be used by an interrupt handler.

Return value

AA_ENONE No error, the mutex is acquired

AA_EARG Invalid argument.

AA_ENOTALLOWED Unauthorized operation, e.g. from an interrupt routine.

AA_ESTATE The mutex is not able to be released: it is acquired by
another task, already released.

AdAstra RTK - STM32 Edition 65 2022-03

4.4 Semaphore

aaSemCreate

aaError_t aaSemCreate (int32_t count,

aaSemId_t * pSemId)

Description TOC §↑

Allows you to create a counter semaphore, and initialize its value. A semaphore
always handles the pending tasks in descending order of priority.

If a task is destroyed while holding a semaphore, the semaphore will not be
rendered, and the resource whose access is protected remains locked.

If a task is suspended while holding a semaphore, the semaphore remains acquired
by the task.

count The initial value of the semaphore counter (from -32768 to +32767).

pSemId A pointer to the variable that will contain the identifier of the created
semaphore.

Return value

AA_ENONE No error, the semaphore is created.

AA_EDEPLETED There is no more semaphore descriptor available.

aaSemDelete

aaError_t aaSemDelete (aaSemId_t semId)

Description TOC §↑

Lets you delete a semaphore, and release its resources.

If any tasks are pending for the semaphore, they are all released by a call to
aaSemFlush().

semId The identifier of the semaphore to delete.

Return value

AA_ENONE No error, the semaphore is destroyed.

AA_EARG The identifier is not a valid identifier.

AdAstra RTK - STM32 Edition 66 2022-03

aaSemIsId

aaError_t aaSemIsId (aaSemId_t semId)

Description TOC §↑

This function checks that the semaphore identifier provided is valid:

- The identifier corresponds to a semaphore

- The semaphore exists (has been created and has not been destroyed).

semId The semaphore identifier to check.

Return value

AA_ENONE The identifier is valid.

AA_EFAIL The identifier is not valid.

aaSemTake

aaError_t aaSemTake (aaSemId_t semId,

uint32_t timeOut)

Description TOC §↑

Acquires the semaphore whose identifier is specified. If the semaphore counter is
less than or equal to 0 the task is put on blocked state until the counter becomes
positive and no other higher priority task is waiting for the semaphore.

This function cannot be used by an ISR.

semId The identifier of the semaphore to acquire.

Return value

AA_ENONE No error, the semaphore is acquired.

AA_EARG The identifier is not a valid identifier.

AA_ENOTALLOWED Call from an interrupt service routine

AA_EWOULDBLOCK Not acquired and timeout 0

AA_EFLUSH Not acquired, released by aaSemFlush().

AA_ETIMEOUT Not acquired, timeout expired.

AdAstra RTK - STM32 Edition 67 2022-03

aaSemTryTake

aaError_t aaSemTryTake (aaSemId_t semId)

Description TOC §↑

Try to get the semaphore with a timeout of 0.

It's a macro equivalent to: aaSemTake (semId, 0).

This macro cannot be used by an ISR.

Return value

The same as aaSemTake().

aaSemGive

aaError_t aaSemGive (aaSemId_t semId)

Description TOC §↑

Increments the counter of a semaphore, and optionally assigns it to a pending task
if it is positive.

The function is allowed from an ISR.

Return value

AA_ENONE No error, the semaphore is released.

AA_EARG The identifier is not a valid identifier.

aaSemFlush

aaError_t aaSemFlush (aaSemId_t semId)

Description TOC §↑

Release all pending tasks atomically. All tasks are released before any of them can
be activated.

The state of the semaphore is unchanged.

This is useful for performing some sort of broadcast to synchronize tasks.

The function is allowed from an ISR.

Return value

AA_ENONE No error, all pending tasks are released.

AA_EARG The identifier is not a valid identifier.

AdAstra RTK - STM32 Edition 68 2022-03

aaSemReset

aaError_t aaSemReset (aaSemId_t semId,

int16_t count)

Description TOC §↑

Initialize the counter of a semaphore. This is only allowed if there are no tasks
waiting to acquire the semaphore.

The function is allowed from an ISR.

Return value

AA_ENONE No error, the semaphore is initialized.

AA_EARG The identifier is not a valid identifier.

AA_ESTATE Not done, there are pending tasks.

AdAstra RTK - STM32 Edition 69 2022-03

4.5 Inter-task signals

aaSignalWait

aaError_t aaSignalWait (aaSignal_t sigsIn,

aaSignal_t * pSigsOut,

uint32_t mode,

uint32_t timeOut)

Description TOC §↑

Allow a task to wait for one or more of its signals to be reported. If the signals are
already present during the call, the task returns immediately. Otherwise it is blocked
until the signals are reported or the timeout is complete.

sigsIn A bit mask that tells what signals are expected.

pSigsOut A pointer to a variable that contains on the return of the function a bit
mask that corresponds to the sigsIn signals that caused the return. This
bit mask can be different from sigsIn if the mode AA_SIGNAL_OR was
used.
pSigsOut can be NULL if the output signal mask is useless.

mode The signal processing to be used to cause the return of the function.

timeout The timeout in system ticks.

The two available modes are:

AA_SIGNAL_AND The task waits until all requested signals are reported.

AA_SIGNAL_OR The task waits until at least one of the requested signals is
reported.

This function is not allowed from an ISR.

Return value

AA_ENONE Expected signals are positioned.

AA_ENOTALLOWED Not allowed from an ISR.

AA_EWOULDBLOCK The expected signals are not present, and the timeout is 0.

AA_ETIMEOUT Signals have not been set before the timeout expires.

AdAstra RTK - STM32 Edition 70 2022-03

aaSignalSend

aaError_t aaSignalSend (aaTaskId_t taskId,

aaSignal_t sigs)

Description TOC §↑

Set the sigs signals of the specified task.

If the specified task is waiting for these signals, it is immediately activated.

This function can be used by an interrupt function.

tasked The identifier of the reportable task.

sigs The mask of the signals to be positioned.

Return value

AA_ENONE No error.

AA_EARG The task identifier is not a valid identifier.

aaSignalPulse

aaError_t aaSignalPulse (aaTaskId_t taskId,

aaSignal_t sigs)

Description TOC §↑

Set the signals sigs and reset signals immediately. In other words, this function is
equivalent to aaSignalSend(), but the sigs signals are not stored.

If the task is waiting and the combination of the signals already present and sigs is
what the task is waiting for it is awake, and the expected signals are set to 0.

In all cases the sigs signals are set to 0.

This function can be used by an interrupt function.

taskId The ID of the task waiting for the signals.

sigs The mask of signals to report.

Return value

AA_ENONE No error.

AA_EARG The ID is not a valid ID.

AdAstra RTK - STM32 Edition 71 2022-03

aaSignalClear

aaError_t aaSignalClear (aaTaskId_t taskId, aaSignal_t sigs)

Description TOC §↑

Allow you to set the sigs signals of the task taskNd to 0.

AA_SGNAL_ALL can be used as a sigs value to set all signals to 0.

Return value

None.

AdAstra RTK - STM32 Edition 72 2022-03

4.6 Dynamic memory allocation

aaMalloc

void * aaMalloc (uint32_t size)

Description TOC §↑

Allocate a block of dynamic memory. The allocation algorithm depends on the
kernel configuration.

size The size of the block in bytes.

Forbidden for an ISR.

Return value

A pointer to the allocated block on success, NULL on failure.

aaCalloc

void * aaCalloc (uint32_t nmemb,

uint32_t size)

Description TOC §↑

Allow you to allocate a dynamic memory block for an array of nmemb elements,
each of size size. The size of the allocated block is nmemb * size bytes.

The allocation algorithm depends on the kernel configuration.

nmemb The number of elements to allocate.

size The size of an element in bytes.

Forbidden for an ISR.

Return value

A pointer to the allocated block on success, NULL on failure.

AdAstra RTK - STM32 Edition 73 2022-03

aaRealloc

void * aaRealloc (void * pMem,

uint32_t size)

Description TOC §↑

Change the size of a previously allocated dynamic memory block.

Forbidden for an ISR.

Return value

A pointer to the allocated block on success, NULL on failure.

aaFree

void aaFree (void * pMem)

Description TOC §↑

Release a previously allocated block of dynamic memory.

Forbidden for an ISR.

Return value

None

aaTryFree

aaError_t aaTryFree (void * pMem)

Description TOC §↑

Attempt to free a previously allocated block of dynamic memory. If this is not
possible the calling task is not blocked.

Release is not possible if the dynamic memory allocation protection mutex is
already acquired by another task.

Return value

AA_ENONE No error.

AA_ENOTALLOWED Unauthorized operation, from an ISR for example.

AA_EWOULDBLOCK Can’t free.

AdAstra RTK - STM32 Edition 74 2022-03

aaMemPoolCheck

uint32_t aaMemPoolCheck (uint32_t bVerbose)

Description TOC §↑

Check the integrity of the links between the dynamic memory blocks. This can
detect writings beyond block size.

Uses the verification algorithm associated with dynamic memory allocation, for
example tlsfCheck().

Forbidden for an ISR.

Return value

Those of the verification algorithm associated with the dynamic memory allocation.

AdAstra RTK - STM32 Edition 75 2022-03

4.7 TLSF Memory Partitioning

tlsfInit

hTlsf_t tlsfInit (void * pMem,

uint32_t size)

Description TOC §↑

Initializes a memory partition managed by the TLSF algorithm

pMem The address of the partition.

size The size of the partition in bytes.

Return value

If successful: The partition handle to use with other TLSF partition management
functions.

In case of failure: NULL.

tlsfMalloc

void * tlsfMalloc (hTlsf_t hTlsf,

uint32_t size)

Description TOC §↑

Allocate a memory block.

hTlsf the handle of the partition.

size The size of the block to allocate in bytes.

Return value

If successful: the address of the allocated block.

In case of failure: NULL.

AdAstra RTK - STM32 Edition 76 2022-03

tlsfCalloc

void * tlsfCalloc (hTlsf_t hTlsf,

uint32_t nmemb,

uint32_t size)

Description TOC §↑

Allow you to allocate a memory block of size: nmemb * size.

hTlsf the handle of the partition.

nmemb The number of elements.

size The size of an element.

Return value

If successful: the address of the allocated block.

In case of failure: NULL.

tlsfFree

void tlsfFree (hTlsf_t hTlsf,

void * ptr)

Description TOC §↑

Allow you to return a memory block to the partition. This block must have been
allocated with tlsfMalloc().

hTlsf The handle of the partition.

ptr The address of the block to release.

Return value

None.

AdAstra RTK - STM32 Edition 77 2022-03

tlsfRealloc

void * tlsfRealloc (hTlsf_t hTlsf,

void * ptr,

uint32_t size) ;

Description TOC §↑

Change the size of a block allocated by tlsfMalloc(). Or tlsfRealloc().

hTlsf The handle of the partition.

ptr The address of the block.

size The new size in bytes.

Return value

If successful: the address of the allocated block.

In case of failure: NULL.

tlsfCheck

aaError_t tlsfCheck (hTlsf_t hTlsf,

uint32_t bVerbose)

Description TOC §↑

Allow verification of the integrity of the memory partition.

hTlsf the The handle of the partition.

bVerbose If this parameter is 0, the Return value is used to evaluate the result of
the test. If the parameter is 1 then additional information is sent with
aaPrintf().

Return value

AA_ENONE If successful.

AA_FAIL In case of failure.

AdAstra RTK - STM32 Edition 78 2022-03

4.8 Block Memory Partition

aaInitMallocBloc

aaError_t aaInitMallocBloc (uint8_t * pBloc,

uint32_t size,

aaMallocBlocId_t * pId) ;

Description TOC §↑

Allow you to initialize a block allocation partition.

pBloc The address of the partition.

size The size of the partition in bytes.

pId A pointer to a variable that contains the handle of the partition when the
function returns.

Return value

AA_ENONE No error.

AA_EARG Invalid argument, the partition is not created.

aaMallocBloc

aaError_t aaMallocBloc (aaMallocBlocId_t blockId,

uint32_t size,

void ** ppBloc) ;

Description TOC §↑

Allocate a block in the block partition.

blockId The handle of the block partition.

size The size of the block to allocate in bytes.

ppBloc A pointer to a variable that contains the address of the allocated block
on return of the function.

Return value

AA_ENONE No error.

AA_EARG Invalid argument, the block is not allocated.

AdAstra RTK - STM32 Edition 79 2022-03

aaMallocBlocFreeSize

aaError_t aaMallocBlocFreeSize (aaMallocBlocId_t blockId,

uint32_t * pSize) ;

Description TOC §↑

Lets you know the free space in the partition.

blockId The handle of the partition.

pSize A pointer to a variable that on returning the function contains the
number of free bytes in the partition.

Return value

AA_ENONE No error.

AA_EARG Invalid argument the size is not filled.

AdAstra RTK - STM32 Edition 80 2022-03

4.9 Log and console

aaLogMes

void aaLogMes (const char * fmt,

uintptr_t a1,

uintptr_t a2,

uintptr_t a3,

uintptr_t a4,

uintptr_t a5)

Description TOC §↑

Send a trace request to the tLogM task.

The trace is not performed immediately but placed in a message queue and later
processed by the task tLogM, the function can be called by an interrupt function.

The arguments must not be pointers to volatile entities (allocated on the stack of the
calling task, for example).

Return value

None.

aaLogMesSetPutChar

void aaLogMesSetPutChar (void (* pPutChar) (char cc))

Description TOC §↑

Specify the function to use to transmit each character of trace messages. This
allows choosing to send the messages to the console, a UART or SWO for
example.

Return value

None.

aaPrintf

uint32_t aaPrintf (const char * fmt,

 ...)

Description TOC §↑

This function has the same syntax as the printf() function of the 'C' standard. It
allows for simplified message formatting, to occupy little space and be fast.

AdAstra RTK - STM32 Edition 81 2022-03

The supported formats are :

c A character

d i Decimal number signed

u Unsigned decimal number

x X X Hexadecimal number

o Octal number

b Binary number

f Float number (with restrictions)

s Character string

p Pointer to void (output similar to %08X)

f Float or double

g format is not supported.

Optional fields can appear between % and the format character, in the following
order :

 « - » Left aligned.

« 0 » Adding 0 in front to complete the length if the "width" field is specified.

« width » Minimum number of characters to generate, can be replaced by *.

« l » Size specification, accepted but ignored.

The %f format was introduced so as not to have to use the standard library which
uses a lot of FLASH and RAM space. However this display must be considered as
indicative and does not support all the functionalities of the standard library (not
NaN for example, and lower precision).

The %f format is enabled and configured in aacfg.h by the constants
AA_WITH_FLOAT_PRINT, AA_FLOAT_T and AA_FLOAT_SEP.

Example: with the format %7.2f the value -3.128 is displayed as '-3.13'

Return value

The number of characters issued.

AdAstra RTK - STM32 Edition 82 2022-03

aaPrintfEx

uint32_t aaPrintfEx (void (* fnPutc) (char),

const char * fmt, ...)

Description TOC §↑

Allows as aaPrintf() to format a message, but specifying the function to use to emit
characters.

Return value

As aaPrintf().

aaSnPrintf

uint32_t aaSnPrintf (char * pBuffer,

uint32_t size

const char * fmt,

...)

Description TOC §↑

Allows as aaPrintf() to format a message, but by copying it to the pBuffer buffer. It is
equivalent to the snprintf() function of C99, but without dynamic memory allocation, and a
moderate use of the stack.

pBuffer The string that receives the characters

size The maximum size to use in pBuffer, including the final NUL character

fmt The format string

... The arguments used by the format

The string contained in pBuffer is always terminated with '\ 0', even if there has been an
overflow.

Return value

The count of characters that are generated, not counting the final '\ 0', assuming
that size is sufficient. If this number is greater than or equal to size, there has been
truncation.

AdAstra RTK - STM32 Edition 83 2022-03

aaGets

uint32_t aaGets (char * pBuffer,

uint32_t size)

Description TOC §↑

Reads at most size - 1 character from the console and places them in the buffer
pointed by pBuffer. Reading stops after a carriage return, which is not placed in the
buffer. A null character is placed at the end of the line.

Some special characters and ANSI sequences are handled: backspaces, arrows,
del, home, end.

pBuffer The string that receives the characters

size The maximum size to use in pBuffer, including the final draw

Return value

The count of characters actually returned, not counted the final draw.

aaSetStdOut

void aaSetStdOut (void (* fnPutc) (char))

Description TOC §↑

Specify the function to use by aaPrintf() and aaPutChar() to emit a character.

In general, the function fnPut() emits a character to the console.

Return value

None.

aaSetStdIn

void aaSetStdIn (char (* fnGetc) (void))

Description TOC §↑

Specify the function to use by aaGetChar() to acquire a character.

In general, the fnGetc () function is used to acquire a character from the console.

Return value

None.

AdAstra RTK - STM32 Edition 84 2022-03

aaPutChar

void aaPutChar (char cc)

Description TOC §↑

Macro that allows to send a character with the function configured with
aaSetStdOut(). Using this macro allows you to write applications independent of the
device you are using.

Return value

None.

aaGetChar

char aaGetChar (void)

Description TOC §↑

Macro that allows you to acquire a character with the function configured with
aaSetStdIn(). Using this macro allows you to write applications independent of the
device you are using.

Return value

None.

AdAstra RTK - STM32 Edition 85 2022-03

4.10 Software Timers

aaTimerCreate

aaError_t aaTimerCreate (aaTimerId_t * pTimerId)

Description TOC §↑

Create a timer and get its identifier.

pTimerId A pointer to the variable that will contain the identifier of the
created timer.

Return value

AA_ENONE No error, the timer is created.

AA_EARG pTimerId is not valid.

AA_EDEPLETED There is no more timer descriptor available.

aaTimerDelete

aaError_t aaTimerDelete (aaTimerId_t timerId)

Description TOC §↑

Disables the timer, and places it in the list of free timers. It cannot be used anymore.

Return value

AA_ENONE No error, the timer is destroyed.

AA_EARG timerId is not a valid flag.

AA_ESTATE This timer is already destroyed.

aaTimerIsId

aaError_t aaTimerIsId (aaTimerId_t timerId)

Description TOC §↑

This function checks that the timer identifier provided is valid:

- The identifier corresponds to a timer

- The timer exists (has been created and has not been destroyed).

timerId The timer identifier to check.

AdAstra RTK - STM32 Edition 86 2022-03

Return value

AA_ENONE The identifier is valid.

AA_EFAIL The identifier is not valid.

aaTimerSet

aaError_t aaTimerSet (aaTimerId_t timerId,

aaTimerCallback callback,

uintptr_t arg,

uint32_t timeout)

Description TOC §↑

Configure the software timer.

timerId The identifier of the timer to use.

callback A pointer to the function that will be called when the timer expires. This
pointer must not be NULL. The prototype of the function is:

typedef uint32_t (* aaTimerCallback) (uintptr_t arg);

arg The argument passed to the callback.

timeout The timer delay in system tick. This time must be between 1 and
AA_INFINITE-1.

Return value

AA_ENONE No error, the timer is configured.

AA_EARG An argument is invalid.

AA_ESTATE This timer is not usable (not created ...).

AdAstra RTK - STM32 Edition 87 2022-03

aaTimerStart

aaError_t aaTimerStart (aaTimerId_t timerId)

Description TOC §↑

Start the timer. The timer must have been configured beforehand with aaTimerSet().

If the timer is already started, it is restarted with its initial duration.

Return value

AA_ENONE No error, the timer is started.

AA_EARG TimerId is invalid.

AA_ESTATE This timer is not usable (not created ...).

aaTimerStop

aaError_t aaTimerStop (aaTimerId_t timerId)

Description TOC §↑

Stop the timer before the timeout expires. It is not a mistake to stop a timer already
stopped.

Return value

AA_ENONE No error, the timer is stopped.

AA_EARG TimerId is invalid.

AA_ESTATE This timer is not usable (not created ...).

AdAstra RTK - STM32 Edition 88 2022-03

4.11 Message queues

aaQueueCreate

aaError_t aaQueueCreate (aaQueueId_t * pQueueId,

uint32_t msgSize,

uint32_t msgCount,

uint8_t * pBuffer,

uint32_t flags)

Description TOC §↑

Create a message queue.

pQueueId A pointer to the variable that will contain the identifier of the
queue created.

msgSize The maximum size of messages in bytes between 1 and 65535.

msgCount The maximum number of messages that the queue can hold,
between 1 and 65535.

pBuffer If the message buffer is provided by the user, pBuffer is a pointer
to a space of at least msgSize * msgCount bytes. If the buffer
needs to be allocated by the kernel, then pBuffer is NULL.

Flags A ccombination of indicators:

AA_QUEUE_PRIORITY Pending tasks are processed by priority
order (exclusive of AA_QUEUE_FIFO).

AA_QUEUE_FIFO Pending tasks are processed in FIFO
order (exclusive of
AA_QUEUE_PRIORITY).

AA_QUEUE_POINTER Messages are pointers. In this case the
value of the msgSize parameter is
ignored. The size of the messages is
implicitly the size of a pointer.

For the kernel to allocate and free the buffer, dynamic memory allocation must be
allowed.

Return value

AA_ENONE No error, the queue is created.

AA_EARG pQueueId is not valid.

AA_EMEMORY The message buffer could not be allocated.

AA_EDEPLETED There are no more queue descriptors available.

AdAstra RTK - STM32 Edition 89 2022-03

aaQueueDelete

aaError_t aaQueueDelete (aaQueueId_t queueId)

Description TOC §↑

Allow to delete the queue and place it in the list of free queues. It cannot be used
anymore.

The message buffer is released if it has been allocated by the kernel, otherwise the
user must take care of it.

Return value

AA_ENONE No error.

AA_EARG pQueueId is not valid.

aaQueueIsId

aaError_t aaQueueId (aaQueueId_t queueId)

Description TOC §↑

This function checks that the provided queue identifier is valid:

- The identifier corresponds to a queue

- The queue exists (has been created and has not been destroyed).

queueId The queue identifier to check.

Return value

AA_ENONE The identifier is valid.

AA_EFAIL The identifier is not valid.

aaQueueGive

aaError_t aaQueueGive (aaQueueId_t queueId,

void * pData,

uint32_t size,

uint32_t timeout)

Description TOC §↑

Add a message to the queue.

pQueueId The identifier of the queue.

AdAstra RTK - STM32 Edition 90 2022-03

pData The address of the message to be copied to the queue.

size The size of the message. If size is 0, then the size specified when
creating the queue is used.

timeout The timeout if the queue is full. If the timeout is 0, the function
returns immediately.

The value of the pData parameter of aaQueueGive() depends on the use of
AA_QUEUE_POINTER when the pool is created.

Without AA_QUEUE_POINTER pData is a pointer to the information to put in
the queue,

With AA_QUEUE_POINTER pData is the information to put in the queue
(therefore it is not a pointer to a pointer).

If the timeout parameter is 0, this is equivalent to using a function that could be
called "aaQueueTryGive()". If the message could not be placed in the queue, the
function returns immediately with the value AA_EWOULDBLOCK.

If this function is called by an interrupt handler, the timeout is ignored and
considered to be 0.

Return value

AA_ENONE No error.

AA_EARG An argument is not valid.

AA_EWOULDBLOCK The queue is full and the timeout is 0, or the caller is an
interrupt.

AA_ETIMEOUT The queue is full and the timeout has expired.

aaQueueTake

aaError_t aaQueueTake (aaQueueId_t queueId,

void * pData,

uint32_t size,

uint32_t timeout)

Description TOC §↑

Extract a message from the queue.

pQueueId The identifier of the queue.

pData The address where to copy the message extracted from the queue.

size The size of the message to copy. If size is 0, then the size specified
when creating the queue is used. If AA_QUEUE_POINTER is used
then size is ignored.

AdAstra RTK - STM32 Edition 91 2022-03

timeout The timeout if the queue is empty. If the timeout is 0, the function
returns immediately.

If the timeout parameter is 0, this is equivalent to using a function that could be
called "aaQueueTryTake()".

If this function is called by an interrupt handler, the timeout is ignored and
considered at 0.

Return value

AA_ENONE No error.

AA_EARG An argument is not valid.

AA_EWOULDBLOCK The queue is empty and the timeout is 0, or the caller is an
interrupt.

AA_ETIMEOUT The queue is empty and the timeout has expired.

aaQueuePeek

aaError_t aaQueuePeek (aaQueueId_t queueId,

void ** ppData,

uint32_t timeout)

Description TOC §↑

Get the address of the next message in the queue without removing the message
from the queue. This allows the message to be inspected before removing it from
the queue.

This function should be used with care if there is more than one reader in the
queue: while one task is inspecting a message, another task can remove it from the
queue.

pQueueId The identifier of the queue.

pData The address where to copy the message address.

timeout The timeout if the queue is full. If the timeout is 0, the function returns
immediately.

If this function is called by an interrupt, the timeout is ignored and considered at 0.

Return value

AA_ENONE No error

AA_EARG An argument is not valid.

AA_EWOULDBLOCK The queue is full and the timeout is 0, or the caller is an
interrupt.

AdAstra RTK - STM32 Edition 92 2022-03

AA_ETIMEOUT The queue is full and the timeout has expired.

aaQueuePurge

aaError_t aaQueuePurge (aaQueueId_t queueId)

Description TOC §↑

Removes the first message from the queue without reading it.

This can be used in conjunction with aaQueuePeek(), if it is not necessary to read
the message.

pQueueId The identifier of the queue.

Return value

AA_ENONE No error

AA_EARG An argument is not valid.

aaQueueGetCount

aaError_t aaQueueGetCount (aaQueueId_t queueId,

uint32_t * pCount)

Description TOC §↑

Copy the count of messages present in the queue in the variable pointed to by
pCount.

Return value

AA_ENONE No error.

AA_EARG An argument is invalid.

AdAstra RTK - STM32 Edition 93 2022-03

4.12 Buffer Pool

aaBufferPoolCreate

aaError_t aaBufferPoolCreate (aaBufPoolId_t * pPoolId,

uint32_t bufCount,

uint32_t bufSize,

void * pBuffer)

Description TOC §↑

Create a descriptor for a buffer pool

pPoold A pointer to the variable that will contain the identifier of the
created pool.

bufCount The number of buffers in the pool.

bufSize The size of a buffer in bytes.

pBuffer If the buffer pool is provided by the user, pBuffer is a pointer to a
space of at least bufSize * bufCount bytes. If the buffer needs to
be allocated by the kernel, then pBuffer is NULL.

For the kernel to allocate and free the pool, dynamic memory allocation must be
allowed.

Return value

AA_ENONE No error.

AA_EARG An argument is not valid.

AA_EMEMORY The buffer pool could not be allocated.

AA_EDEPLETED There is no more pool descriptor available.

AdAstra RTK - STM32 Edition 94 2022-03

aaBufferPoolDelete

aaError_t aaBufferPoolDelete (aaBufPoolId_t bufPoolId,

uint32_t bForce)

Description TOC §↑

Delete a pool of buffers, and places its descriptor in the list of free descriptors.

bufPoolId The pool identifier

bForce If bForce is 0, the pool is destroyed only if all buffers in the pool
are free (returned to the pool). If bForce is 1, the buffer is
destroyed unconditionally.

The buffer pool is released if it has been allocated by the kernel, otherwise the user
must take care of it.

Return value

AA_ENONE No error.

AA_EARG An argument is not valid.

aaBufferPoolIsId

aaError_t aaBufferPoolIsId (aaBufPoolId_t bufPoolId)

Description TOC §↑

This function checks that the provided pool identifier is valid:

- The identifier corresponds to a pool

- The pool exists (has been created and has not been destroyed).

bufPoolId The pool identifier to check.

Return value

AA_ENONE The identifier is valid.

AA_EFAIL The identifier is not valid.

AdAstra RTK - STM32 Edition 95 2022-03

aaBufferPoolTake

aaError_t aaBufferPoolTake (aaBufPoolId_t bufPoolId,

void ** ppBuffer)

Description TOC §↑

Get a buffer from the pool.

bufPoolId The pool identifier

ppBuffer A pointer to a pointer that contains the buffer address at the
return of the function.

Return value

AA_ENONE No error.

AA_EARG An argument is not valid.

AA_EDEPLETED There is no buffer available.

aaBufferPoolGive

aaError_t aaBufferPoolGive (aaBufPoolId_t bufPoolId,

void * pBuffer)

Description TOC §↑

Return the buffer to the pool.

bufPoolId The pool identifier

pBuffer The address of the buffer to return to the pool.

Return value

AA_ENONE No error.

AA_EARG An argument is not valid.

AdAstra RTK - STM32 Edition 96 2022-03

aaBufferPoolGetCount

aaError_t aaBufferPoolGetCount (aaBufPoolId_t bufPoolId,

uint32_t * pCount)

Description TOC §↑

Get the number of buffers available from the pool.

bufPoolId The pool identifier.

pCount The address of a variable that will contain the count of available
buffers.

Return value

AA_ENONE No error.

AA_EARG An argument is not valid.

aaBufferPoolReset

aaError_t aaBufferPoolReset (aaBufPoolId_t bufPoolId)

Description TOC §↑

Allows reset the pool to its state when it was created.

Return value

AA_ENONE No error.

AA_EARG An argument is not valid.

AdAstra RTK - STM32 Edition 97 2022-03

4.13 User Functions

This chapter lists the application functions known by the kernel.

userInitTask

void userInitTask (uintptr_t arg)

Description TOC §↑

This function is called by kernel initialization and this is the first task of the
application.

When calling this function the kernel is completely started, all resources are
available.

The application must define this function.

Return value

None

aaUserReleaseStack

aaError_t aaUserReleaseStack (uint8_t * pStack,

uint32_t size)

Description TOC §↑

If a task uses a static stack allocated by the user, then during the destruction of this
task the aaUserReleaseStack() callback is called. This gives the user the
opportunity to know that a memory block is free and manage it accordingly.

pStack A pointer to the memory block to release.

Size The size of the memory block.

If the memory block is released, the function must return AA_ENONE.

If the memory block is not released, the function must return AA_EFAIL. The
callback will be recalled later for a new release attempt.

A weak version of this function is defined by the kernel, it always returns
AA_ENONE. If the application does not have the use of this function it does not
need to define it.

Return value

AA_ENONE The memory block is released.

AdAstra RTK - STM32 Edition 98 2022-03

AA_EFAIL The memory block is not released, try again.

aaUserNotify

void aaUserNotify (uint32_t event,

uintptr_t arg)

Description TOC §↑

This function allows the kernel to warn the user of certain events.

These events are identified by the value of the event parameter:

AA_NOTIFY_STACKOVFL The stack of the task overflowed. arg is the task
identifier.

AA_NOTIFY_STACKTHR The stack monitoring threshold has been reached.
arg is the task identifier.

In order for these events to be detected and transmitted to the user, the task must
be created with the AA_FLAG_STACKCHECK flag.

These events are only notified once.

A weak version of this function is defined by the kernel. If the application does not
have the use of this function it does not need to define it.

Return value

None.

AdAstra RTK - STM32 Edition 99 2022-03

4.14 Board Support Package

bspGetTickRate

uint32_t bspGetTickRate (void)

Description TOC §↑

Lets you know the frequency of the system clock (tick).

Return value

The frequency of the system clock in hertz.

bspSetTickRate

aaError_t bspSetTickRate (uint32_t tickHz)

Description TOC §↑

Allow you to specify the frequency of the system clock (tick). Cannot be used if
stretched tick mode is chosen.

tickHz The frequency of the system clock in hertz.

Return value

AA_ENONE The system clock is configured.

AA_FAIL The system clock is not configured.

bspGetSysClock

uint32_t bspGetSysClock (void)

Description TOC §↑

Lets you know the clock frequency of the processor.

Return value

The clock frequency of the processor

AdAstra RTK - STM32 Edition 100 2022-03

bspResetHardware

void bspResetHardware (void)

Description TOC §↑

Allows a software reset of the processor.

Return value

None.

bspOutput

void bspOutput (uint32_t num,

uint32_t state)

Description TOC §↑

Used to set the status of a GPIO output configured by the BSP.

In general, the LEDs of an evaluation board are defined by the BSP, and constants
are used to access these outputs.

num The GPIO number that can be defined by the BSP, for example
BSP_LED0.

state The state to assign to the GPIO output: 0 or 1.

This function is declared "inline" and if the parameters are constants the generated
code is reduced to a single assembly instruction, which makes this function very
little intrusive.

Return value

None.

AdAstra RTK - STM32 Edition 101 2022-03

bspInput

uint32_t bspInput (uint32_t num)

Description TOC §↑

Read the status of a GPIO input configured by the BSP.

In general the buttons of an evaluation board are defined by the BSP, and constants
are used to access these inputs.

num The GPIO number that can be set by the BSP, for example
BSP_BUTTON0.

Return value

The value of the GPIO input: 0 or 1.

bspMainStackCheck

uint32_t bspMainStackCheck (void)

Description TOC §↑

Provides information about system stack usage.

Return value

Returns the number of unused words in the system stack.

AdAstra RTK - STM32 Edition 102 2022-03

The "time stamp" functions allows to measure periods of time using the processor
cycle counter. The counter uses 32 bits, and the resolution corresponds to the
frequency of the system clock.

For example, if the system clock is 168 MHz, the counter resolution is 5.95 ns.
Under these conditions, the 32-bit counter loops back after about 25.5 seconds,
which corresponds to the maximum measurable time period, according to the
formula: Tmax = 232 / bspGetSysClock().

CPU Frequency Maximum measurable
time

64 MHz 67.1 s

168 MHz 25.5 s

400 MHz 10.7 s

High resolution measurements can be made using the bspTsGet() and
bspRawDelta() functions.

It is sometimes necessary to accumulate durations for a time longer than that
allowed by the 32 bits and the resolution of the cycle counter. For this we can use
bspTsDelta() which provides a duration in μs. It is thus possible to accumulate
durations for about 1h: 11mn. Pay attention to losses due to rounding accumulation.

Warning: each delta remains subject to the loopback constraint of the cycle counter,
and must therefore be less than this loopback time.

Remark: An MCU with Cortex-M0 or Cortex M0+ core does not have a cycle
counter. For these MCU the counter is implemented using a timer. The timer and its
resolution must be specified in the bsp.h file. Most timers have a 16 bits counter, so
the resolution is lower than with the cycle counter, to get a useful measurement
period.

bspTsGet

uint32_t bspTsGet (void)

Description TOC §↑

Return the current value of the processor cycle counter. The resolution is that of the
frequency of the system clock, which can be obtained with bspGetSysClock().

This function is declared “inline”.

Return value

The current value of the cycle counter.

AdAstra RTK - STM32 Edition 103 2022-03

bspRawTsDelta

uint32_t bspRawTsDelta (uint32_t * pTs)

Description TOC §↑

Acquires the current value of the cycle counter and subtracts the value pointed to by
pTs, the result of the subtraction is the value returned. It corresponds to the number
of cycles elapsed between the previous call to bspTsGet() or bspTsDelta() which
provided the value pointed to by pTs, and the instant of the call of this function.

After the calculation, the current value of the counter is placed in the variable
pointed by pTs.

This function is declared "inline".

Return value

The difference between the current value of the counter and the value pointed by
pTs.

bspTsDelta

uint32_t bspTsDelta (uint32_t * pTs)

Description TOC §↑

Performs the same operations as bspRawTsGet(), but the returned value is
converted to μs.

This allows for example to accumulate delays up to more than one hour in an
unsigned 32-bit variable.

This function is declared "inline".

Example to check the duration of a second of the kernel:

uint32_t ts, delta ;

aaTaskDelay (1) ;

ts = bspTsGet () ;

aaTaskDelay (bspGetTickRate ()) ;

delta = bspTsDelta (& ts) ;

aaLogMes ("Delay:%u us Now:%u\n", delta, ts, 0, 0, 0) ;

Return value

The difference between the current counter value and the value pointed to by pTs
converted to μs.

AdAstra RTK - STM32 Edition 104 2022-03

bspDelayUs

void bspDelayUs (uint32_t us)

Description TOC §↑

Execute an active wait of the duration in micro second passed in parameter. The
calling task is not suspended for the duration of the delay and therefore consumes
CPU time.

However, the task can be preempted by a higher priority task that becomes ready.
The waiting time as a parameter is therefore a minimum time.

The accuracy of the delay is of the order of 1% beyond 10μs.

AdAstra RTK - STM32 Edition 105 2022-03

swoInit

void swoInit (uint32_t portBits,

uint32_t cpuCoreFreqHz,

uint32_t baudrate)

Description TOC §↑

Initialize the ITM mechanism that makes it possible to emit traces by the SWO pin in
DEBUG mode.

portBits A mask that allows you to specify the stimuli to configure.

cpuCoreFreqHz The clock frequency of the processor in Hz.

Baudrate The bit frequency of the SWO output

The values of cpuCoreFreqHz and baudrate are used to calculate the divisor
needed to generate the SWO bit rate frequency.

To find out if the SWO mechanism is operational, use swoIsEnabled().

Return value

None.

swoIsEnabled

void swoIsEnabled (void)

Description TOC §↑

Lets you know if SWO mechanism is initialized and operational.

If this function is called while the application is handled by a debugger, then the
SWO mechanic is operational, and the swoIsEnabled() function will return a non-
zero value.

If this function is called while the application is not managed by the debugger
(application launched by a physical reset for example), then the SWO mechanic is
not operational, and the swoIsEnabled() function will return 0. In this case the SWO
management functions can be called, but will not do anything

AdAstra RTK - STM32 Edition 106 2022-03

swoSendXx

void swoSend8 (uint8_t value, uint8_t portNo)

void swoSend16 (uint16_t value, uint8_t portNo)

void swoSend32 (uint32_t value, uint8_t portNo)

Description TOC §↑

These functions make it possible to issue words of different lengths on the stimulus
portNo, from 0 to 31, of the ITM.

Return value

None

swoPutChar, swoPutStr

void swoPutChar (char value)

void swoPutStr (char * pStr)

Description TOC §↑

swoPutChar() transmits a character on stimulus 0 of the ITM. This function is used
by the BSP to specify the redirection of the logMes() outputs to the SWO.

The function swoPutStr() allows to emit a string terminated by 0 on the stimulus 0 of
the ITM.

Return value

None

AdAstra RTK - STM32 Edition 107 2022-03

4.15 Intrinsics

The kernel uses intrinsic functions of the compiler if they exist, otherwise the BSP
must provide them. The functions used are therefore available for applications.
Advantageously refer to the documentation of the compiler for the meaning and use
of these functions.

Correspondence for GCC :

aaVA_LIST __builtin_va_list

aaVA_START __builtin_va_start

aaVA_END __builtin_va_end

aaVA_ARG __builtin_va_arg

aaISDIGIT __builtin_isdigit

aaSTRLEN __builtin_strlen

aaSTRCMP __builtin_strcmp

aaSTRNCMP __builtin_strncmp

aaSTRCPY __builtin_strcpy

aaMEMCPY __builtin_memcpy

aaMEMSET __builtin_memset

The use of intrinsic functions allows in numerous uses to take place of the "C"
library, as newlib or nanolib

AdAstra RTK - STM32 Edition 108 2022-03

5 License

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <https://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing

it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document

"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,

with or without modifying it, either commercially or noncommercially. Secondarily, this License

preserves for the author and publisher a way to get credit for their work, while not being considered

responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must

themselves be free in the same sense. It complements the GNU General Public License, which is a

copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software

needs free documentation: a free program should come with manuals providing the same freedoms

that the software does. But this License is not limited to software manuals; it can be used for any

textual work, regardless of subject matter or whether it is published as a printed book. We

recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by

the copyright holder saying it can be distributed under the terms of this License. Such a notice grants

a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated

herein. The "Document", below, refers to any such manual or work. Any member of the public is a

licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work

in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,

either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals

exclusively with the relationship of the publishers or authors of the Document to the Document's

overall subject (or to related matters) and contains nothing that could fall directly within that overall

subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not

explain any mathematics.) The relationship could be a matter of historical connection with the subject

or with related matters, or of legal, commercial, philosophical, ethical or political position regarding

them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of

Invariant Sections, in the notice that says that the Document is released under this License. If a

https://fsf.org/

AdAstra RTK - STM32 Edition 109 2022-03

section does not fit the above definition of Secondary then it is not allowed to be designated as

Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any

Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-

Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover

Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format

whose specification is available to the general public, that is suitable for revising the document

straightforwardly with generic text editors or (for images composed of pixels) generic paint programs

or (for drawings) some widely available drawing editor, and that is suitable for input to text

formatters or for automatic translation to a variety of formats suitable for input to text formatters. A

copy made in an otherwise Transparent file format whose markup, or absence of markup, has been

arranged to thwart or discourage subsequent modification by readers is not Transparent. An image

format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent"

is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo

input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-

conforming simple HTML, PostScript or PDF designed for human modification. Examples of

transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats

that can be read and edited only by proprietary word processors, SGML or XML for which the DTD

and/or processing tools are not generally available, and the machine-generated HTML, PostScript or

PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are

needed to hold, legibly, the material this License requires to appear in the title page. For works in

formats which do not have any title page as such, "Title Page" means the text near the most

prominent appearance of the work's title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely

XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here

XYZ stands for a specific section name mentioned below, such as "Acknowledgements",

"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you

modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License

applies to the Document. These Warranty Disclaimers are considered to be included by reference in

this License, but only as regards disclaiming warranties: any other implication that these Warranty

Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or

noncommercially, provided that this License, the copyright notices, and the license notice saying this

License applies to the Document are reproduced in all copies, and that you add no other conditions

whatsoever to those of this License. You may not use technical measures to obstruct or control the

reading or further copying of the copies you make or distribute. However, you may accept

AdAstra RTK - STM32 Edition 110 2022-03

compensation in exchange for copies. If you distribute a large enough number of copies you must

also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display

copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the

Document, numbering more than 100, and the Document's license notice requires Cover Texts, you

must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover

Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and

legibly identify you as the publisher of these copies. The front cover must present the full title with

all words of the title equally prominent and visible. You may add other material on the covers in

addition. Copying with changes limited to the covers, as long as they preserve the title of the

Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones

listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must

either include a machine-readable Transparent copy along with each Opaque copy, or state in or with

each Opaque copy a computer-network location from which the general network-using public has

access to download using public-standard network protocols a complete Transparent copy of the

Document, free of added material. If you use the latter option, you must take reasonably prudent

steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy

will remain thus accessible at the stated location until at least one year after the last time you

distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before

redistributing any large number of copies, to give them a chance to provide you with an updated

version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2

and 3 above, provided that you release the Modified Version under precisely this License, with the

Modified Version filling the role of the Document, thus licensing distribution and modification of the

Modified Version to whoever possesses a copy of it. In addition, you must do these things in the

Modified Version:

 A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be listed in
the History section of the Document). You may use the same title as a previous version if
the original publisher of that version gives permission.

 B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

AdAstra RTK - STM32 Edition 111 2022-03

 C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

 D. Preserve all the copyright notices of the Document.

 E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

 F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form shown in
the Addendum below.

 G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document's license notice.

 H. Include an unaltered copy of this License.

 I. Preserve the section Entitled "History", Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in the previous sentence.

 J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four years
before the Document itself, or if the original publisher of the version it refers to gives
permission.

 K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

 L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section titles.

 M. Delete any section Entitled "Endorsements". Such a section may not be included
in the Modified Version.

 N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in
title with any Invariant Section.

 O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary

Sections and contain no material copied from the Document, you may at your option designate some

or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the

Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of

your Modified Version by various parties—for example, statements of peer review or that the text

has been approved by an organization as the authoritative definition of a standard.

AdAstra RTK - STM32 Edition 112 2022-03

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as

a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage

of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made

by) any one entity. If the Document already includes a cover text for the same cover, previously

added by you or by arrangement made by the same entity you are acting on behalf of, you may not

add another; but you may replace the old one, on explicit permission from the previous publisher that

added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their

names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms

defined in section 4 above for modified versions, provided that you include in the combination all of

the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant

Sections of your combined work in its license notice, and that you preserve all their Warranty

Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant

Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same

name but different contents, make the title of each such section unique by adding at the end of it, in

parentheses, the name of the original author or publisher of that section if known, or else a unique

number. Make the same adjustment to the section titles in the list of Invariant Sections in the license

notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original

documents, forming one section Entitled "History"; likewise combine any sections Entitled

"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled

"Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this

License, and replace the individual copies of this License in the various documents with a single copy

that is included in the collection, provided that you follow the rules of this License for verbatim

copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this

License, provided you insert a copy of this License into the extracted document, and follow this

License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or

works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright

resulting from the compilation is not used to limit the legal rights of the compilation's users beyond

what the individual works permit. When the Document is included in an aggregate, this License does

not apply to the other works in the aggregate which are not themselves derivative works of the

Document.

AdAstra RTK - STM32 Edition 113 2022-03

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the

Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on

covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the

Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole

aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document

under the terms of section 4. Replacing Invariant Sections with translations requires special

permission from their copyright holders, but you may include translations of some or all Invariant

Sections in addition to the original versions of these Invariant Sections. You may include a

translation of this License, and all the license notices in the Document, and any Warranty

Disclaimers, provided that you also include the original English version of this License and the

original versions of those notices and disclaimers. In case of a disagreement between the translation

and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the

requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided

under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and

will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright

holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally

terminates your license, and (b) permanently, if the copyright holder fails to notify you of the

violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright

holder notifies you of the violation by some reasonable means, this is the first time you have received

notice of violation of this License (for any work) from that copyright holder, and you cure the

violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have

received copies or rights from you under this License. If your rights have been terminated and not

permanently reinstated, receipt of a copy of some or all of the same material does not give you any

rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation

License from time to time. Such new versions will be similar in spirit to the present version, but may

differ in detail to address new problems or concerns. See https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document specifies that

a particular numbered version of this License "or any later version" applies to it, you have the option

of following the terms and conditions either of that specified version or of any later version that has

been published (not as a draft) by the Free Software Foundation. If the Document does not specify a

version number of this License, you may choose any version ever published (not as a draft) by the

https://www.gnu.org/licenses/

AdAstra RTK - STM32 Edition 114 2022-03

Free Software Foundation. If the Document specifies that a proxy can decide which future versions

of this License can be used, that proxy's public statement of acceptance of a version permanently

authorizes you to choose that version for the Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that

publishes copyrightable works and also provides prominent facilities for anybody to edit those works.

A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor

Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus

published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by

Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San

Francisco, California, as well as future copyleft versions of that license published by that same

organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another

Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were

first published under this License somewhere other than this MMC, and subsequently incorporated in

whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus

incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the

same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

